Influence of Polymer Structure and Architecture on Drug Loading and Redox-Triggered Release

2021 ◽  
Author(s):  
Peidong Wu ◽  
Jingjing Gao ◽  
Priyaa Prasad ◽  
Kingshuk Dutta ◽  
Pintu Kanjilal ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Dick Yan Tam ◽  
Pik Kwan Lo

The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading andin vivotargeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.


e-Polymers ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 409-417 ◽  
Author(s):  
Yifan Song ◽  
Yun Chai ◽  
Kai Xu ◽  
Puyu Zhang

AbstractA new functional pH-responsive polyurethane-based nanomicelle has been developed with BES-Na as the functional monomer, the buffering agent with tertiary amine, and sulfonic acid group was incorporated into the hydrophilic shell as the functional agent, which resulted in polyurethane nanosystem with pH-sensitive property. Folic acid (FA) was chosen as model hydrophobic drug to evaluate the loading and pH-triggered release of the PU micelles in vitro drug loading and release. The drug loading content (LC) and the encapsulation efficiency (EE) for FA-loaded micelles in phosphate-buffered solutions were 7.68% and 27.72%, respectively, and the largest accumulative drug release percentages in pH 6.8 and pH 5.0 were 79.17% and 89.83% in 24 h, respectively. A facile and versatile approach has been provided for the design and fabrication of smart nanovehicles for effective drug delivery and opens a new thought in the design and fabrication of biodegradable polyurethanes for next generation of nanomicellar systems.


2018 ◽  
Vol 34 (3) ◽  
pp. 365-383 ◽  
Author(s):  
Sumaira Naeem ◽  
Geetha Viswanathan ◽  
Misni Bin Misran

AbstractThe advancement of research in colloidal systems has led to the increased application of this technology in more effective and targeted drug delivery. Nanotechnology enables control over functionality parameters and allows innovations in biodegradable, biocompatible, and stimuli-responsive delivery systems. The first closed bilayer phospholipid system, the liposome system, has been making steady progress over five decades of extensive research and has been efficient in achieving many desirable parameters such as remote drug loading, size-controlling measures, longer circulation half-lives, and triggered release. Liposome-mediated drug delivery has been successful in overcoming obstacles to cellular and tissue uptake of drugs with improved biodistributionin vitroandin vivo. These colloidal nanovehicles have moved on from a mere concept to clinical applications in various drug delivery systems for antifungal, antibiotic, and anticancer drugs.


2018 ◽  
Vol 15 (12) ◽  
pp. 5479-5492 ◽  
Author(s):  
Longbing Ling ◽  
Muhammad Ismail ◽  
Yawei Du ◽  
Qing Xia ◽  
Wei He ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 511 ◽  
Author(s):  
Jingjie Feng ◽  
Weiqiu Wen ◽  
Yong-Guang Jia ◽  
Sa Liu ◽  
and Jianwei Guo

One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug controlled-release studies. The polymers derived from bio-compound bile acids and degradable poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)3, resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)3. These pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of 29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic acid-based functionalized three-armed block polymers present good biocompatibility, showing great potential for drug controlled-release.


Author(s):  
Ashutosh Gupta ◽  
Malay Kumar Mandal ◽  
Bhupendra Singh ◽  
Yashwant Yashwant ◽  
Bharat Jhanwar

Liposomes (50-1000nm) are the part of a specific type of drug delivery system which is non-toxic and biodegradable in nature. That having ability to reduce the toxicity also enhances the therapeutic efficiency and protects the drug which is encapsulated, from the degradation and immediate dilution. These can be prepared by using various techniques like lipid hydration method, sonication method and solvent injecting method etc. But the selection of technique is depended upon the size of liposome which we want. The main disadvantage of this dosage form is it is very much costly and also having time consuming process. But it has major applications in the form of extrusion for homogeneous size, long circulating liposomes, triggered release liposome, remote drug loading, ligand targeted liposomes and containing combination of drugs. These applications are helpful for advanced drug delivery of anticancer, antifungal and anti-inflammatory drug, the delivery of gene medicine, delivery of anaesthetic and antibiotic drug. The newer researches in this field include hybrid liposomes, phototrigerable liposomes which are fabricated to have the improved functionality. These serves as the upcoming novel nanomedicinal chemotherapy technique.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 281
Author(s):  
Li Li ◽  
Dongyu Lei ◽  
Jiaojiao Zhang ◽  
Lu Xu ◽  
Jiashan Li ◽  
...  

Intelligent stimulus-triggered release and high drug-loading capacity are crucial requirements for drug delivery systems in cancer treatment. Based on the excessive intracellular GSH expression and pH conditions in tumor cells, a novel glutathione (GSH) and pH dual-responsive hydrogel was designed and synthesized by conjugates of glutamic acid-cysteine dendrimer with alginate (Glu-Cys-SA) through click reaction, and then cross-linked with polyethylene glycol (PEG) through hydrogen bonds to form a 3D-net structure. The hydrogel, self-assembled by the inner disulfide bonds of the dendrimer, is designed to respond to the GSH heterogeneity in tumors, with a remarkably high drug loading capacity. The Dox-loaded Glu-Cys-SA hydrogel showed controlled drug release behavior, significantly with a release rate of over 76% in response to GSH. The cytotoxicity investigation indicated that the prepared DOX-loaded hydrogel exhibited comparable anti-tumor activity against HepG-2 cells with positive control. These biocompatible hydrogels are expected to be well-designed GSH and pH dual-sensitive conjugates or polymers for efficient anticancer drug delivery.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenqi Jiang ◽  
Bo Yuan ◽  
Nianxiang Qiu ◽  
Yinjie Wang ◽  
Li Sun ◽  
...  

Abstract Zeolitic imidazolate frameworks (ZIFs) as smart drug delivery systems with microenvironment-triggered release have attracted much attention for tumor therapy. However, the exploration of ZIFs in biomedicine still encounters many issues, such as inconvenient surface modification, fast drug release during blood circulation, undesired damage to major organs, and severe in vivo toxicity. To address the above issues, we developed an Mn-ZIF-90 nanosystem functionalized with an originally designed active-targeting and pH-responsive magnetic resonance imaging (MRI) Y1 receptor ligand [Asn28, Pro30, Trp32]-NPY (25–36) for imaging-guided tumor therapy. After Y1 receptor ligand modification, the Mn-ZIF-90 nanosystem exhibited high drug loading, better blood circulation stability, and dual breast cancer cell membrane and mitochondria targetability, further favoring specific microenvironment-triggered tumor therapy. Meanwhile, this nanosystem showed promising T1-weighted magnetic resonance imaging contrast in vivo in the tumor sites. Especially, this nanosystem with fast clean-up had almost no obvious toxicity and no damage occurred to the major organs in mice. Therefore, this nanosystem shows potential for use in imaging-guided tumor therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luqing Zhao ◽  
Xueying Du ◽  
Jiaxin Tian ◽  
Xiuhong Kang ◽  
Yuxin Li ◽  
...  

Inflammatory bowel disease (IBD) is a refractory disorder characterized by chronic and recurrent inflammation. The progression and pathogenesis of IBD is closely related to oxidative stress and irregularly high concentrations of reactive oxygen species (ROS). A new oxidation-responsive nano prodrug was constructed from a phenylboronic esters-modified carboxylmethyl chitosan (OC-B) conjugated with berberine (BBR) that degrades selectively in response to ROS. The optimized micelles exhibited well-controlled physiochemical properties and stability in a physiological environment. OC-B-BBR micelles could effectively encapsulate the anti-inflammatory drug berberine and exhibit ideal H2O2-triggered release behavior as confirmed by in vitro drug loading and release studies. The in vivo anti-inflammatory effect and regulation of gut microbiota caused by it were explored in mice with colitis induced by dextran sodium sulfate (DSS). The results showed that OC-B-BBR significantly ameliorated colitis symptoms and colon damage by regulating the expression levels of IL-6 and remodeling gut microbiota. In summary, this study exhibited a novel BBR-loaded Carboxylmethyl Chitosan nano delivery system which may represent a promising approach for improving IBD treatment.


2021 ◽  
Vol 594 ◽  
pp. 474-484
Author(s):  
Thejus Baby ◽  
Yun Liu ◽  
Guangze Yang ◽  
Dong Chen ◽  
Chun-Xia Zhao

Sign in / Sign up

Export Citation Format

Share Document