Plasmonic Semiconductor Nanoparticles in a Metal–Organic Framework Structure and Their in Situ Cation Exchange

2016 ◽  
Vol 28 (20) ◽  
pp. 7511-7518 ◽  
Author(s):  
Andreas Wolf ◽  
Lisa Diestel ◽  
Franziska Lübkemann ◽  
Torben Kodanek ◽  
Tarek Mohamed ◽  
...  
2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2021 ◽  
Vol 316 ◽  
pp. 110957
Author(s):  
Mian Zahid Hussain ◽  
Mounib Bahri ◽  
Werner R. Heinz ◽  
Quanli Jia ◽  
Ovidiu Ersen ◽  
...  

Langmuir ◽  
2013 ◽  
Vol 29 (27) ◽  
pp. 8657-8664 ◽  
Author(s):  
Wei-Jin Li ◽  
Shui-Ying Gao ◽  
Tian-Fu Liu ◽  
Li-Wei Han ◽  
Zu-Jin Lin ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4449
Author(s):  
Lijian Sun ◽  
Limei Li ◽  
Xianhui An ◽  
Xueren Qian

The development of photothermal materials with a high light-to-heat conversion capability is essential for the utilization of clean solar energy. In this work, we demonstrate the use of a novel and sustainable concept involving cellulose liquefaction, rapid gelation, in situ synthesis and hot-press drying to convert cellulose and metal–organic framework (Prussian blue) into a stable photothermal bioplastic that can harvest sunlight and convert it into mechanical motion. As expected, the obtained Prussian blue@cellulose bioplastic (PCBP) can effectively absorb sunlight and the surface can be heated up to 70.3 °C under one sun irradiation (100 mW cm−2). As a demonstration of the practicality of PCBP, it was successfully used to drive a Stirling engine motion. Meanwhile, hot-pressing promotes the densification of the structure of PCBP and, therefore, improves the resistance to the penetration of water/non-aqueous liquids. Moreover, PCBP shows good mechanical properties and thermal stability. Given the excellent photothermal performance and environmentally friendly features of photothermal conversion bioplastic, we envisage this sustainable plastic film could play important roles toward diversified applications: a photothermal layer for thermoelectric generator, agricultural films for soil mulching and photothermal antibacterial activity, among others.


2016 ◽  
Vol 138 (32) ◽  
pp. 10232-10237 ◽  
Author(s):  
Robert J. Comito ◽  
Keith J. Fritzsching ◽  
Benjamin J. Sundell ◽  
Klaus Schmidt-Rohr ◽  
Mircea Dincă

Sign in / Sign up

Export Citation Format

Share Document