scholarly journals Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance

2018 ◽  
Vol 118 (12) ◽  
pp. 5952-5984 ◽  
Author(s):  
David A. Dik ◽  
Jed F. Fisher ◽  
Shahriar Mobashery
1998 ◽  
Vol 1 (4) ◽  
pp. 223-226 ◽  
Author(s):  
Bernd Wiedemann ◽  
Dieter Pfeifle ◽  
Irith Wiegand ◽  
Eva Janas

mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Coralie Fumeaux ◽  
Thomas G. Bernhardt

ABSTRACT Peptidoglycan (PG) is an essential cross-linked polymer that surrounds most bacterial cells to prevent osmotic rupture of the cytoplasmic membrane. Its synthesis relies on penicillin-binding proteins, the targets of beta-lactam antibiotics. Many Gram-negative bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, are resistant to beta-lactams because of a chromosomally encoded beta-lactamase called AmpC. In P. aeruginosa, expression of the ampC gene is tightly regulated and its induction is linked to cell wall stress. We reasoned that a reporter gene fusion to the ampC promoter would allow us to identify mutants defective in maintaining cell wall homeostasis and thereby uncover new factors involved in the process. A library of transposon-mutagenized P. aeruginosa was therefore screened for mutants with elevated ampC promoter activity. As an indication that the screen was working as expected, mutants with transposons disrupting the dacB gene were isolated. Defects in DacB have previously been implicated in ampC induction and clinical resistance to beta-lactam antibiotics. The screen also uncovered murU and PA3172 mutants that, upon further characterization, displayed nearly identical drug resistance and sensitivity profiles. We present genetic evidence that PA3172, renamed mupP, encodes the missing phosphatase predicted to function in the MurU PG recycling pathway that is widely distributed among Gram-negative bacteria. IMPORTANCE The cell wall biogenesis pathway is the target of many of our best antibiotics, including penicillin and related beta-lactam drugs. Resistance to these therapies is on the rise, particularly among Gram-negative species like Pseudomonas aeruginosa, a problematic opportunistic pathogen. To better understand how these organisms resist cell wall-targeting antibiotics, we screened for P. aeruginosa mutants defective in maintaining cell wall homeostasis. The screen identified a new factor, called MupP, involved in the recycling of cell wall turnover products. Characterization of MupP and other components of the pathway revealed that cell wall recycling plays important roles in both the resistance and the sensitivity of P. aeruginosa to cell wall-targeting antibiotics. IMPORTANCE The cell wall biogenesis pathway is the target of many of our best antibiotics, including penicillin and related beta-lactam drugs. Resistance to these therapies is on the rise, particularly among Gram-negative species like Pseudomonas aeruginosa, a problematic opportunistic pathogen. To better understand how these organisms resist cell wall-targeting antibiotics, we screened for P. aeruginosa mutants defective in maintaining cell wall homeostasis. The screen identified a new factor, called MupP, involved in the recycling of cell wall turnover products. Characterization of MupP and other components of the pathway revealed that cell wall recycling plays important roles in both the resistance and the sensitivity of P. aeruginosa to cell wall-targeting antibiotics.


Author(s):  
Ganiyat Shitta ◽  
Olufunmilola Makanjuola ◽  
Olusolabomi Adefioye ◽  
Olugbenga Adekunle Olowe

Background: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the bla TEM,bla SHVand bla CTX-Mgenes. The prevalence of ESBL producing bacteria has been on the increase globally especially its upsurge among isolates from community-acquired infections. Aim: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. Material and Methods: A cross-sectional study was carried out from August 2016 –July 2017 in Osun State, Nigeria. Three hundred and sixty Gram negative bacteria recovered from clinical samples obtained from both community and healthcare associated infections were tested. They included147 Escherichia coli(40.8%), 116 Klebsiella spp(32.2%), 44 Pseudomo-nas aeruginosa(12.2%) and23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). Results: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). : Overall prevalence of ESBL producers was 41.4% with Klebsiellaspp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the blaCTX-Mgene predominating (47.0%) followed by blaTEM(30.9%) and blaSHVgene was the least, 22.1%. The blaCTX-Mgene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. Conclusion: A high prevalence of ESBL producing gram negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control spread of these pathogens should be addressed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


2018 ◽  
Vol 69 (8) ◽  
pp. 1410-1421 ◽  
Author(s):  
Hajnalka Tóth ◽  
Adina Fésűs ◽  
Orsolya Kungler-Gorácz ◽  
Bence Balázs ◽  
László Majoros ◽  
...  

Abstract Background Increasing antibiotic resistance may reciprocally affect consumption and lead to use of broader-spectrum alternatives; a vicious cycle that may gradually limit therapeutic options. Our aim in this study was to demonstrate this vicious cycle in gram-negative bacteria and show the utility of vector autoregressive (VAR) models for time-series analysis in explanatory and dependent roles simultaneously. Methods Monthly drug consumption data in defined daily doses per 100 bed-days and incidence densities of gram-negative bacteria (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii) resistant to cephalosporins or to carbapenems were analyzed using VAR models. These were compared to linear transfer models used earlier. Results In case of all gram-negative bacteria, cephalosporin consumption led to increasing cephalosporin resistance, which provoked carbapenem use and consequent carbapenem resistance and finally increased colistin consumption, exemplifying the vicious cycle. Different species were involved in different ways. For example, cephalosporin-resistant Klebsiella spp. provoked carbapenem use less than E. coli, and the association between carbapenem resistance of P. aeruginosa and colistin use was weaker than that of A. baumannii. Colistin use led to decreased carbapenem use and decreased carbapenem resistance of P. aeruginosa but not of A. baumannii. Conclusions VAR models allow analysis of consumption and resistance series in a bidirectional manner. The reconstructed resistance spiral involved cephalosporin use augmenting cephalosporin resistance primarily in E. coli. This led to increased carbapenem use, provoking spread of carbapenem-resistant A. baumannii and consequent colistin use. Emergence of panresistance is fueled by such antibiotic-resistance spirals.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Romain Mercier ◽  
Yoshikazu Kawai ◽  
Jeff Errington

The peptidoglycan cell wall is a defining structural feature of the bacterial kingdom. Curiously, some bacteria have the ability to switch to a wall-free or ‘L-form’ state. Although known for decades, the general properties of L-forms are poorly understood, largely due to the lack of systematic analysis of L-forms in the molecular biology era. Here we show that inhibition of peptidoglycan precursor synthesis promotes the generation of L-forms from both Gram-positive and Gram-negative bacteria. We show that the L-forms generated have in common a mechanism of proliferation involving membrane blebbing and tubulation, which is dependent on an altered rate of membrane synthesis. Crucially, this mode of proliferation is independent of the essential FtsZ based division machinery. Our results suggest that the L-form mode of proliferation is conserved across the bacterial kingdom, reinforcing the idea that it could have been used in primitive cells, and opening up its use in the generation of synthetic cells.


Author(s):  
T.F. Stepanova ◽  
L.V. Kataeva ◽  
A.P. Rebeshchenko ◽  
Le Thanh Hai ◽  
Khu Thi Khanh Dung ◽  
...  

The results of studies of resistance to antibiotics microflora isolated from mucous pharynx and rectum of patients intensive care unit newborns of National Hospital of Pediatrics, Hanoi are presented. It is shown that gram-negative bacteria isolated from children have a high resistance to penicillins, cephalosporins and carbapenem. Antibiotic resistance of bacteria isolated from children receiving treatment in «pure» block did not differ from sustainability of the strains, selected from children in «dirty» block.


Sign in / Sign up

Export Citation Format

Share Document