Extended Spectrum Beta Lactamase (ESBL), bla TEM,bla SHVand bla CTX-M,resistance genes in Community and Healthcare Associated Gram Negative Bacteria from Osun State, Nigeria

Author(s):  
Ganiyat Shitta ◽  
Olufunmilola Makanjuola ◽  
Olusolabomi Adefioye ◽  
Olugbenga Adekunle Olowe

Background: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the bla TEM,bla SHVand bla CTX-Mgenes. The prevalence of ESBL producing bacteria has been on the increase globally especially its upsurge among isolates from community-acquired infections. Aim: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. Material and Methods: A cross-sectional study was carried out from August 2016 –July 2017 in Osun State, Nigeria. Three hundred and sixty Gram negative bacteria recovered from clinical samples obtained from both community and healthcare associated infections were tested. They included147 Escherichia coli(40.8%), 116 Klebsiella spp(32.2%), 44 Pseudomo-nas aeruginosa(12.2%) and23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). Results: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). : Overall prevalence of ESBL producers was 41.4% with Klebsiellaspp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the blaCTX-Mgene predominating (47.0%) followed by blaTEM(30.9%) and blaSHVgene was the least, 22.1%. The blaCTX-Mgene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. Conclusion: A high prevalence of ESBL producing gram negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control spread of these pathogens should be addressed.

KYAMC Journal ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 171-175
Author(s):  
Tania Rahman ◽  
Momtaz Begum ◽  
Sharmeen Sultana ◽  
SM Shamsuzzaman

Background: In recent years, Extended-spectrum beta-lactamase (ESBL) producing microorganisms have complicated treatment of infections due to resistance of ESBL producing strains to a wide range of antimicrobials. Objective: Target of this study was to determine the prevalence of ESBL producing gramnegative bacteria in neonatal sepsis cases and to reveal the antimicrobial susceptibility pattern of those isolated ESBL producers. Materials and Methods: This cross sectional study was carried out in Dhaka Medical College Hospital (DMCH) over a period of 12 months from January to December in 2016. Following isolation and identification of gram-negative bacteria from blood samples of suspected septicemic neonates, antimicrobial susceptibility test was performed by Kirby Bauer disk-diffusion method and ESBL producers were detected by Double Disk Synergy (DDS) test. Results: Among 52 Gram-negative bacteria isolated from 106 blood samples, 34.61% ESBL producers were detected and Enterobacter spp. (45%) was predominant followed by Klebsiella pneumoniae (33.33%). None of the ESBL producers was resistant to colistin and tigecycline. All ESBL producing Acinetobacter baumannii, 77.78% and 66.67% of ESBL producing Enterobacter spp and Klebsiella spp. respectively showed resistance to meropenem. All ESBL producers were resistant to piperacillintazobactam. Conclusion: Appropriate measures should be taken to prevent the spread of ESBL producing strains by combining strategies for infection prevention, control and rational use of antibiotics. KYAMC Journal Vol. 11, No.-4, January 2021, Page 171-175


2017 ◽  
Vol 10 (1) ◽  
pp. 8-12
Author(s):  
Shikha Paul ◽  
Sanya Tahmina Jhora ◽  
Prashanta Prasun Dey ◽  
Bilkis Ara Begum

Detection of Extended spectrum beta lactamase (ESBL) enzyme producing bacteria in hospital settings is vital as ESBL genes are transmissible. This study was carried out to determine the distribution of ESBL producing gram negative isolates at a tertiary care hospital in Dhaka city which deals with the patients hailing from relatively low socioeconomic status.Onehundred and twenty four gram negative bacteria isolated from different clinical specimens from outpatient and inpatient departments of Sir Salimullah Medical College and Mitford Hospital (SSMC & MH) were tested for ESBL by E test ESBL method in the department of microbiology of Sir Salimullah medical college (SSMC) from March 2013 to August 2013.Out of 124 gram negative bacteria 69 (55.65%) were positive for ESBL. Among the ESBL producers, Esch.coli was the highest (46.38%) which was followed by Serratia spp (11.59%), Enterobacter spp (10.14%), Proteus spp, (8.70%), Acinetobacter spp.(7.24%) and Klebsiella spp.(5.79%). Out of 32 Esch.coli isolated from outpatient department, 10 (31.25%) were positive for ESBL. On the other hand out of 27 Esch. coli isolated from inpatient department, 22 (81.48%) were positive for ESBL. The difference was statistically significant (p<0.001).So the present study reveals that the distribution of ESBL producers is more among the hospitalized patients than the patients of the community.Bangladesh J Med Microbiol 2016; 10 (1): 8-12


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 632 ◽  
Author(s):  
Matteo Bassetti ◽  
Antonio Vena ◽  
Chiara Sepulcri ◽  
Daniele Roberto Giacobbe ◽  
Maddalena Peghin

The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.


2020 ◽  
Vol 20 (1) ◽  
pp. 4-13
Author(s):  
Vitus Silago ◽  
Yusuph Mukama ◽  
Anna L Haule ◽  
Frank Chacha ◽  
John Igenge ◽  
...  

Background: Infections caused by Extended spectrum beta lactamase (ESBL) producing bacterial are global challenge. There is limited information on the magnitude of bacteriospermia, ESBL producing Gram-negative bacteria (GNB) causing bacte- riospermia and factors associated with male infertility. This study determined magnitude of bacteriospermia, ESBL-GNB and other factors association with infertility among presumptive infertile men in Mwanza, Tanzania. Methods: A cross-sectional hospital-based study was conducted between May 2017 and July 2018 among 137 presumptive infer- tile men. Semen specimens were self-collected by masturbation into clean, sterile and none-spermicidal containers and processed following laboratory standard operating procedures (SOPs). Data analysis was done using STATA 13.0. Results: Gram-negative bacteria were predominantly isolated (86.4%), of which 31.6% were ESBL producers. In a total 44 bacteria were isolated from semen culture. The blaCTX-M gene was detected in 75% of phenotypically confirmed ESBL producers. Infertility was independently found to be associated with abnormal spermatozoa morphology (OR (95%CI): 14.48(3.17-66.05)) and abnormal spermatozoa motility (OR (95%CI): 0.05(0.01-0.24)). However, neither bacteriospermia (OR (95%CI): 0.86(0.29- 2.59)) nor ESBL bacteriospermia (OR (95%CI): 0.13(0.01-1.22)) was found to be associated with infertility. Conclusion: One third of bacteriospermia is due to ESBL-producers with history of antibiotic use being protective factor for infertility. Abnormal spermatozoa morphology and poor spermatozoa forward motility independently predicted infertility. Keywords: Bacteriospermia; blaCTX-M; male infertility; extended spectrum beta lactamase; Mwanza; Tanzania.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S107-S108
Author(s):  
J Xin Liao ◽  
Vrishali Lopes ◽  
Haley J Appaneal ◽  
Kerry LaPlante ◽  
Aisling Caffrey

Abstract Background Public health institutions including the World Health Organization and the United States Centers for Disease Control and Prevention (CDC) have recognized the threat of antibiotic resistant infections caused by Gram-negative bacteria. These bacteria are particularly concerning as they can demonstrate resistance to all available antibiotic classes through various mechanisms. We set out to assess antibiotic resistance trends in Gram-negative bacteria to optimize antimicrobial stewardship and infection control initiatives in our health system. Methods We identified positive cultures (1st per patient per month) of P. aeruginosa and select Enterobacterales (Citrobacter, Escherichia coli, Enterobacter, Klebsiella, Morganella morganii, Proteus mirabilis, Serratia marcescens) collected from patients hospitalized at Veterans Affairs (VA) Medical Centers nationally from 2011 to 2020. Time trends were assessed with joinpoint regression to estimate average annual percent changes (AAPC) with 95% confidence intervals (CIs) for the following resistance phenotypes utilizing CDC definitions: multi-drug resistance (MDR), extended-spectrum beta-lactamase (ESBL), and carbapenem (CR) and fluoroquinolone (FR) resistance. Results We included 496,384 isolates in our study: E. coli (32.6%), Klebsiella (20%), P. aeruginosa (18.9%), P. mirabilis (11.5%), Enterobacter (7.8%), Citrobacter (3.7%), S. marcescens (2.9%), and M. morganii (2.6%). Trends in resistance are shown in the figures. MDR, ESBL, CR, and FR decreased significantly (p&lt; 0.05) over the study period for most of the organisms assessed, with the exception of MDR and ESBL E. coli and CR P. mirabilis which remained stable, and CR M. morganii which increased significantly by 7.1% per year (95% CI 0.2% to 14.5%). The largest decreases were in CR E. coli by 29.5% per year (95% CI -36.5% to -21.8%), CR Klebsiella by 23.7% per year (95% CI -27.6% to -19.5%), and MDR and CR S. marcescens by 12.2% (95% CI -14.4% to -9.9%) and 12.3% per year (95% CI -16.2% to -8.1%), respectively. Figure 1. Antibiotic resistance trends in Citrobacter spp., E. coli, Enterobacter spp., and Klebsiella spp. Antibiotic resistance trends (by percentage) in (a) Citrobacter spp, (b) E. coli, (c) Enterobacter spp, and (d) Klebsiella spp from 2011-2020. Abbreviations: MDR = multi-drug resistance (defined as non-susceptible to at least 1 drug in at least 3 of the following categories: extended-spectrum cephalosporins, fluoroquinolones, aminoglycosides, carbapenems, piperacillin/tazobactam); ESBL = extended spectrum beta-lactamase (defined as non-susceptible to at least 1 of the following drugs: cefepime, ceftriaxone, cefotaxime, ceftolozane/tazobactam, ceftazidime/avibactam); CR = carbapenem resistance (defined as non-susceptible to at least 1 carbapenem); FR = fluoroquinolone resistance (defined as non-susceptible to at least 1 fluoroquinolone); AAPC = annual average percentage change; CI = confidence interval. Figure 2. Antibiotic resistance trends in Pseudomonas aeruginosa, Proteus mirabilis, Serratia marcescens, and Morganella morganii. Antibiotic resistance trends (by percentage) in (e) Pseudomonas aeruginosa, (f) Proteus mirabilis, (g) Serratia marcescens, and (h) Morganella morganii from 2011-2020. Abbreviations: MDR = multi-drug resistance (defined as non-susceptible to at least 1 drug in at least 3 of the following categories: extended-spectrum cephalosporins, fluoroquinolones, aminoglycosides, carbapenems, piperacillin/tazobactam); ESBL = extended spectrum beta-lactamase (defined as non-susceptible to at least 1 of the following drugs: cefepime, ceftriaxone, cefotaxime, ceftolozane/tazobactam, ceftazidime/avibactam); CR = carbapenem resistance (defined as non-susceptible to at least 1 carbapenem); FR = fluoroquinolone resistance (defined as non-susceptible to at least 1 fluoroquinolone); AAPC = annual average percentage change; CI = confidence interval. Conclusion Overall, MDR, ESBL, CR, and FR in Enterobacterales and P. aeruginosa decreased from 2011 to 2020 in the VA. These results may be related to the robust infection control and antimicrobial stewardship programs instituted among VA Medical Centers nationally. Disclosures Kerry LaPlante, PharmD, Merck (Research Grant or Support)Pfizer Pharmaceuticals (Research Grant or Support)Shionogi, Inc (Research Grant or Support) Aisling Caffrey, PhD, Merck (Research Grant or Support)Pfizer (Research Grant or Support)Shionogi, Inc (Research Grant or Support)


2000 ◽  
Vol 44 (10) ◽  
pp. 2911-2914 ◽  
Author(s):  
Laura Villa ◽  
Cristina Pezzella ◽  
Fabio Tosini ◽  
Paolo Visca ◽  
Andrea Petrucca ◽  
...  

ABSTRACT A conjugative IncL/M plasmid (pSEM) conferring resistance to gentamicin, amikacin, kanamycin, sulfonamides, and expanded-spectrum cephalosporins was found in pathogenic strains of Salmonella enterica serotype Typhimurium. Resistance to aminoglycosides was encoded by a sul1-type class 1 integron (In-t3). An extended-spectrum beta-lactamase gene,bla SHV-5, was identified 3.5 kb downstream of the integrase (intI1) gene of In-t3. Nucleotide sequence analysis of the 5.3-kb bla SHV-5–In-t3 region of pSEM highlighted striking similarities with IncL/M plasmids isolated from nosocomial gram-negative pathogens, conferring resistance to expanded-spectrum cephalosporins and aminoglycosides.


2013 ◽  
Vol 141 (11-12) ◽  
pp. 775-779 ◽  
Author(s):  
Tatjana Markovic ◽  
Ljiljana Jeinic ◽  
Aleksandra Smitran ◽  
Miroslav Petkovic

Introduction. In Gram-negative bacteria, the production of beta-lactamases is the most important mechanism of resistance to beta-lactam antibiotics. In the Banja Luka region, there were no extensive researches on the prevalence and antimicrobial resistance of the extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) isolates. Objective. The aim of the present study was to determine the presence of ESBL producing E. coli isolates as the cause of the urinary tract infections in outpatients, the distribution of these ESBL isolates according to age and gender of patients and their susceptibility to antimicrobials. Methods. Urine specimens obtained from outpatients were cultured on chromogenic CPS-ID3 media. All plates showing significant (>105 cfu/ml) growth of E. coli in pure culture were further processed. Antimicrobial susceptibility testing was performed on VITEK TWO Compact using AST-GN27 cards for testing Gram negative bacteria and detection of ESBL producers. Results. Out of 2,195 isolates, 177 (8.1%) were ESBL producers. Ninety-two isolates were obtained from female patients (5% of E. coli isolated from women) and 85 isolates from male patients (23% of E. coli isolated from men). High percentage of ESBL isolates was detected in the infant age group under one year (36.7%) and in the age group over 60 years (28.8%). All ESBL isolates were susceptible to imipenem and resistant to ampicillin, piperacillin, cefazolin, cefotaxime, ceftazidime and cefepime. There was a significant resistance to amikacin (79.1%), gentamicin (76.8%), amoxicillin/clavulanate (54.8%) and trimethoprim/sulphamethoxazole (45.8%). Resistance to nutrofurantoin was 13.6%. Conclusion. This study has demonstrated the presence of ESBL producing E. coli urinary isolates in outpatients, and their extensive susceptibility to imipenem and nitrofurantoin.


Author(s):  
Kavi Aniis ◽  
Rajamanikandan Kcp ◽  
Arvind Prasanth D

<p>ABSTRACT<br />Objective: Beta-lactams are the group of antibiotics that contain a ring called as “beta-lactam ring,” which is responsible for the antibacterial activity.<br />The presence of resistance among Gram-negative organisms is due to the production of beta-lactamases enzymes that hydrolysis the beta-lactam ring<br />thereby conferring resistance to the organism. This study is undertaken to determine the prevalence of extended-spectrum beta-lactamase (ESBL)<br />producing Gram-negative organism from clinical samples.<br />Methods: A total of 112 clinical samples were taken for this study. The combined disc synergistic test (CDST) was used for the phenotypic detection<br />of ESBL producers from the clinical samples. The genotypic identification of ESBL producers was carried out by alkaline lysis method by isolation of<br />plasmid DNA.<br />Result: A total of 87 bacterial isolates were isolated and identified. Among them, Klebsiella (41%) was the predominant organism followed by<br />Escherichia coli (33%), Proteus (10%), Pseudomonas (10%), and Serratia (6%). Among the various bacterial isolates, Klebsiella showed a higher<br />percentage of resistance. The CDST showed that 8 isolates of Klebsiella, 3 isolates of E. coli, and 1 isolate of Pseudomonas were found to be ESBL<br />producers. The genotypic confirmation showed that the two bacterial isolates, namely, Klebsiella and E. coli were found to possess temoniera (TEM)<br />gene which was the 400-500 bp conferring resistance to the antibiotics.<br />Conclusion: The results of this study suggest that early detection of ESBL producing Gram-negative organism is a very important step in planning the<br />therapy of patient in Hospitals. CDST continues to be a good indicator in the detection of ESBL producers.<br />Keywords: Beta-lactamases, Gram-negative bacilli, Extended-spectrum beta-lactamase, Resistance, Combined disc synergistic test.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document