Application of Coatings to Alleviate Fireside Corrosion on Heat Transfer Tubes during the Combustion of Low-Grade Solid Fuels: A Review

2020 ◽  
Vol 34 (10) ◽  
pp. 11752-11770 ◽  
Author(s):  
Xiuju Zhang ◽  
Huan Liu ◽  
Tongzhou Chen ◽  
Geyi Wang ◽  
Haiyan Li ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6141
Author(s):  
Wojciech Judt

The paper concerns the analysis of the heat transfer process that occurred during solid fuel burning in fixed bed conditions. The subject of the analysis is a cylindrical combustion chamber with an output of 12 kW heating power equipped with a retort burner for hard coal and biomass combustion. During the research, a numerical and experimental study is performed. The analysis is prepared for various heat load of the combustion chamber, which allowed for the reconstruction of real working conditions for heating devices working with solid fuels combustion. The temperature distribution obtained by the experimental way is compared with results of the numerical modeling. Local distribution of principal heat transfer magnitudes like a heat flux density and a heat transfer coefficient that occurred on the sidewall of the combustion chamber is analyzed. The analysis showed, that the participation of convection and radiation in the overall heat transfer process has resulted from the heat load of the heating device. Research results may be used for improving an analytical approach of design process taking place for domestic and industrial combustion chambers.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 562 ◽  
Author(s):  
Gianluca Lillo ◽  
Rita Mastrullo ◽  
Alfonso William Mauro ◽  
Raniero Trinchieri ◽  
Luca Viscito

The rising of the global energy demand requires the use of alternative energy conversion systems employing renewable sources. In the refrigeration and air conditioning fields, heat driven ejector systems represent a promising way to produce the cooling effect by using available low-grade temperature sources. In this paper, a thermo-economic analysis of a waste heat recovery hybrid ejector cycle (WHRHEC) was carried out. A thermodynamic model was firstly developed to simulate a WHRHEC able to obtain chilled water with a cooling load of 20 kW, by varying the working fluids and the pinch point values in the heat exchangers. Specific single- and two-phase heat transfer correlations were used to estimate the heat transfer surface and therefore the investment costs. The operative ranges that provide a reasonable compromise between the set-up costs and the cycle performances were then defined and compared to the current waste heat-driven technologies, such as absorption chillers and organic Rankine cycles (ORCs) coupled with vapor compression cycles (VCCs). The last part of the paper presents an economic analysis providing the map of the design (plant size) and contingent (specific cost of energy, waste heat availability) variables that lead to the economic convenience of a WHRHEC system when integrated to a conventional VCC plant.


Author(s):  
Christopher B. Churchill ◽  
John Shaw

Two thirds of the energy generated in the United States is currently lost as waste heat, representing a potentially vast source of green energy. Low Carnot efficiency is an inherent limitation of extracting energy from low-grade thermal sources (temperature gradients near or below 100C), and SMA heat engines could be useful for those applications where low weight and packaging are overriding considerations. Although many shape memory alloy (SMA) heat engines have been proposed to harvest this energy, and a few have been built and demonstrated in past decades, they have not been commercially successful. Some of the barriers to commercialization include their perceived low thermodynamic efficiency, high material cost, low material durability, complexities when using fluid baths, and the lack of robust constitutive models and design tools. Recent advances, however, in SMA longevity, reductions in materials costs (as production volumes have increased), and a better understanding of SMA behavior have stimulated new research on SMA heat engines. The Lightweight Thermal Energy Recovery System (LighTERS) is an ongoing ARPA-E funded collaboration between General Motors, HRL Laboratories, Dynalloy, Inc., and the University of Michigan. In the LighTERS engine (a refinement of the Dr. Johnson engine), a closed loop SMA spring element generates mechanical power by pulling itself between alternating hot and cold air regions. The first known thermo-mechanical model for this type of heat engine was developed in three stages. First, the constitutive and heat transfer relationships of an SMA spring form were characterized experimentally. Second, those relationships were used as inputs in a steady-state model of the heat engine, including both convective heat transfer and large-deformation mechanics. Finally, the model was validated successfully against measurements of a experimental heat engine built at HRL Labs.


Fuel ◽  
2008 ◽  
Vol 87 (8-9) ◽  
pp. 1724-1733 ◽  
Author(s):  
R. Marsh ◽  
A.J. Griffiths ◽  
K.P. Williams

2014 ◽  
Vol 694 ◽  
pp. 211-217 ◽  
Author(s):  
Ya Xiu Gu ◽  
Tian Wang ◽  
Wei Liu ◽  
Feng Feng Ma

There is a large potential in the heat loss from the urban wastewater. In all kinds of low-grade heat sources, urban wastewater is gradually widely used because of its advantages such as huge quantities, small variation of temperature, warm in winter and cool in summer, etc. By integrating a heat pump to utilize this heat, the wastewater source heat pump (WWSHP), which is a new water reuse and treatment strategy to tackle the water problems of China and to realize the sustainable development, recovers the heat of wastewater. The WWSHP air conditioning system as residential application can reduce the need of energy systems based on fossil fuel for cooling, heating, and hot water's supply purposes. The system's working principle, classification and the wastewater's characteristic parameters were discussed in this paper. And the scheme of using WWSHP system for central air-conditioning compared with other refrigerating and heating equipments was analyzed in detail. The investigation into COP (Coefficient of Performance) and PER (Primary Energy Ratio) was shown in this paper. Among the four kinds of common air conditioning units, when the loads are same respectively, the WWSHP has the most significant energy-saving effect. Furthermore, mechanism of heat transfer enhancement for falling-film evaporation and condensation surface of tubes packed with wire-mesh is also studied in detail. Theoretical simulation will be carried out for the heat transfer process and the flow of falling-film outside horizontal tubes. Improvement of controlling parameters influenced the evaporation and condensation performance, and then led to an increase in the refrigerating quantity and the COP. Consequently, this WWSHP system has its theoretical significance and promising engineering application potentials for the residential refrigerating and air-conditioning system using low-temperature waste heat source.


2021 ◽  
Vol 266 ◽  
pp. 02004
Author(s):  
I.V. Litin ◽  
M.Yu. Nazarenko ◽  
S.N. Saltykova

Recently, there has been a growing global interest in processing low-grade types of solid fuels, such as oil shale. In the near future, the role of solid fuels in the country's fuel and energy balance is expected to increase, primarily due to their large reserves. Based on this, this work evaluates the semi – coke obtained by semi-coking low-grade types of solid combustible fossils-oil shale of the Baltic basin (Leningrad deposit). The influence of process parameters (temperature and holding time) on the physical and chemical properties of shale semi-coke was studied experimentally. Based on the data obtained, it is concluded that the obtained samples of semi-coke from oil shale and brown coal can be used as a substitute for coke in various industries and the national economy.


Author(s):  
M. Hasatani ◽  
I. Naruse ◽  
H. Matsuda ◽  
H. Sugita ◽  
N. Arai

Author(s):  
Govinda Mahajan ◽  
Heejin Cho ◽  
Scott M. Thompson ◽  
Harrison Rupp ◽  
Kevin Muse

Oscillating heat pipes (OHPs) were experimentally assessed as a passive-type heat transfer device for air-to-air heat exchange in a typical Heating Ventilation & Air conditioning system (HVAC) with adjacent air streams at different temperatures. The objective is to utilize, otherwise wasted thermal energy to pre-heat or pre-cool air in order to reduce the payload on HVAC systems, thus reducing energy consumption. OHPs can achieve effective thermal conductivities on-the-order of 10,000 W/m-K via no internal wicking structure and hence can perform aforementioned heat transfer task while providing an aerodynamic form factor. A unique working fluid with limited research inside OHPs, but with properties desirable for low grade heat fluxes, i.e. n-pentane with 70 % fill ratio, was chosen as the working fluid to achieve maximum heat transfer. Aerodynamic performance, in terms of pressure drop, was evaluated and juxtaposed with heat transfer gain/loss. The OHP thermal performance and total heat transfer for hot-environment HVAC operation was benchmarked with an empty/evacuated OHP with same overall dimensions. Results indicate that the current, atypically-long OHP is fully-capable of operating in the air-to-air convection mode for waste heat recovery for typical HVAC operating conditions. Since the OHP is passive, cost effective, and relatively aerodynamic (no fins were used), the potential cost savings for its integration into HVAC systems can be significant.


Sign in / Sign up

Export Citation Format

Share Document