In Vitro Digestion of Tire Particles in a Fish Model (Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion

Author(s):  
Thibault Masset ◽  
Benoit J. D. Ferrari ◽  
Dean Oldham ◽  
William Dudefoi ◽  
Matteo Minghetti ◽  
...  

2020 ◽  
Vol 101 ◽  
pp. 105534 ◽  
Author(s):  
Christian Kleemann ◽  
Raffael Schuster ◽  
Elisabeth Rosenecker ◽  
Ilka Selmer ◽  
Irina Smirnova ◽  
...  


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 114-115
Author(s):  
Cienna J Boss ◽  
Jung Wook Lee ◽  
Rob Patterson ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine effects of pretreating and supplementing soybean hulls with multi-enzyme on porcine in vitro digestion and fermentation characteristics. Treatments were untreated and heat-pretreated (160 °C and 70 psi for 20 min) soybean hulls without or with multi-enzyme in a 2 × 2 factorial arrangement. The multi-enzyme supplied 2,800 U of cellulase, 1,800 U of pectinase, 400 U of mannanase, 1,000 U of xylanase, 600 U of glucanase, and 200 U of protease/kilogram of feedstuff. Feedstuffs were subjected to in vitro digestion with porcine pepsin and pancreatin, followed by in vitro fermentation for 72 h. Accumulated gas production was recorded and modeled to estimate kinetics of gas production. On DM basis, untreated and pretreated soybean hulls contained 10.4 and 10.6% CP, and 63.2 and 49.5% ADF, respectively. Pretreatment and multi-enzyme supplementation did not interact on in vitro digestibility of DM (IVDDM). Untreated and pretreated soybean hulls did not differ in IVDDM (24.8 vs. 25.7%). Multi-enzyme increased (P < 0.05) IVDDM of soybean hulls by a mean of 45.5%. Pretreatment and multi-enzyme unaffected total gas production. Pretreatment and multi-enzyme interacted (P < 0.05) on fractional rate of degradation such that the fractional rate of degradation for pretreated soybean hulls was greater (P < 0.05) than that of untreated soybean hulls when soybean hulls were supplemented with multi-enzyme (0.045 vs. 0.062 h-1), but not when soybean hulls were unsupplemented with multi-enzyme (0.053 vs. 0.059 h-1). In conclusion, multi-enzyme supplementation increased IVDDM, implying that the multi-enzyme used in the study can be used to enhance utilization of soybean hulls. Heat pretreatment increased the rate of fermentation of multi-enzyme-supplemented soybean hulls, implying that the rate of fermentation of soybean hulls in the hindgut of pigs can be enhanced by a combination of heat pretreatment and multi-enzyme supplementation.



2009 ◽  
Vol 10 (3) ◽  
pp. 638-644 ◽  
Author(s):  
Anthony C. Dona ◽  
Guilhem Pages ◽  
Robert G. Gilbert ◽  
Marianne Gaborieau ◽  
Philip W. Kuchel


2020 ◽  
Vol 12 (11) ◽  
pp. 4792
Author(s):  
Verónica Godoy ◽  
Antonio Martínez-Férez ◽  
María Ángeles Martín-Lara ◽  
José Antonio Vellido-Pérez ◽  
Mónica Calero ◽  
...  

The human body is exposed to the ingestion of microplastics that are often contaminated with other substances, which can be released into our body. In this work, a dynamic in-vitro simulator of the gastrointestinal tract based on a membrane reactor has been used for the first time to study the release, bioaccessibility, and bioavailability of chromium (Cr) and lead (Pb) from polyethylene and polypropylene microplastics previously contaminated in the laboratory. The results showed that 23.11% of the initial Cr and 23.17% of the initial Pb present in microplastics were able to cross the tubular membrane, simulating the intestinal absorption phase. The pH evolution during the gastric phase and the duodenal phase, the interaction mechanisms with physiological fluids, and the properties of the polymers, such as specific surface, porosity, and/or surface degradation, affected the kinetics of release from the microplastics and the behavior of both heavy metals. Cr was released very early in the gastric phase, but also began simultaneously to precipitate quite fast, while Pb was released slower and in less quantity than Cr, and did not precipitate until the beginning of the duodenal phase. This study shows, for the first time, how useful the dynamic gastrointestinal simulator is to study the behavior of microplastics and some problematic heavy metals along the human gastrointestinal tract, and can serve as a reference for future studies focused on the effects of these substances in the human body.



2018 ◽  
Vol 85 ◽  
pp. 343-351 ◽  
Author(s):  
Ping Li ◽  
Sushil Dhital ◽  
Bin Zhang ◽  
Xiaowei He ◽  
Xiong Fu ◽  
...  


2021 ◽  
Vol 111 ◽  
pp. 106235
Author(s):  
Xin Wang ◽  
Aiqian Ye ◽  
Anant Dave ◽  
Harjinder Singh


2021 ◽  
Author(s):  
Yesudas Gudivada

While in vivo methods have been used to determine the glycemic response of food, they are time consuming, costly, and not suitable for large-scale applications. As an alternative, in vitro digestion models offer fast, reproducible results to study food digestion kinetics that are less expensive than conducting human trials. While there are several in vitro glycemic index (GI) methods used to determine the GI of food, most do not employ methods of in vivo testing. Therefore, we used a static in vitro digestive system, the Dedicated Ryerson University In-vitro Digester (DRUID), that simulates both gastric and intestinal conditions to determine the glycemic response of commonly consumed carbohydrate-containing foods. Samples were collected at regular intervals over a 2h residence time after digestion in the intestinal phase of the DRUID. The DRUID-determined GI values were compared to published in vivo GI values. A Bland-Altman plot showed that there was agreement between the GI values determined from the DRUID compared with published in vivo GI values. In conclusion, the in vitro DRUID can reliably and reproducibly determine the GI across a spectrum of carbohydrate-containing foods, and has the potential to predict the digestion kinetics of novel food products in vivo that may promote human health.



2021 ◽  
Author(s):  
Katharina Pälchen ◽  
Daphne Michels ◽  
Dorine Duijsens ◽  
Shannon Tabeth Gwala ◽  
Andrea Katherine Pallares Pallares ◽  
...  

Attention has been given to more (semi-)dynamic in vitro digestion approaches, ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time...





Sign in / Sign up

Export Citation Format

Share Document