Effect of the Scale-Up Process on the Reactor Performance within the Riser: Simulation Using Ozone Decomposition

Author(s):  
Congjing Ren ◽  
Yao Yang ◽  
Zhengliang Huang ◽  
Jingyuan Sun ◽  
Yongrong Yang ◽  
...  
2013 ◽  
Vol 67 (11) ◽  
pp. 2568-2575 ◽  
Author(s):  
I. S. Michie ◽  
J. R. Kim ◽  
R. M. Dinsdale ◽  
A. J. Guwy ◽  
G. C. Premier

For the successful scale-up of microbial fuel cell (MFC) systems, enrichment strategies are required that not only maximise reactor performance but also allow anodic biofilms to be robust to environmental change. Cluster analysis of Denaturing Gradient Gel Electrophoresis community fingerprints showed that anodic biofilms were enriched according to substrate type and temperature. Acetate produced the highest power density of 7.2 W m−3 and butyrate the lowest at 0.29 W m−3, but it was also found that the trophic conditions used to acclimate the electrogenic biofilms also determined the MFC response to different substrate types, with both acetate and butyrate substrates recording power densities of 1.07 and 1.0 W m−3 respectively in a sucrose enriched reactor. When temperature perturbations were introduced to investigate the stability of the different substrate acclimated electrogenic biofilms, the 20 °C acclimated acetate reactor was unaffected by 10 °C operation but all reactors acclimated at 35 °C were adversely affected. When the operating temperature was raised back to 35 °C both the acetate and butyrate reactors recovered electrogenic activity but the sucrose reactor did not. It is thought that this was due to the more complex syntropic interactions that are required to occur when metabolising more complex substrate types.


2002 ◽  
Vol 5 (2) ◽  
Author(s):  
C. A. Martín ◽  
R. J. Brandi ◽  
O. M. Alfano ◽  
A. E. Cassano

AbstractThis paper presents the most important technical tools that are needed for designing homogeneous photoreactors using computer simulation of a rigorous mathematical description of the reactor performance. Employing intrinsic reaction kinetic models and parameters derived from properly analyzed laboratory information, it is shown that is possible to scale up reactors with no additional information and without resorting to empirically adjusted correcting factors. The method is illustrated with two processes of degradation of organic pollutants as typical applications of the newly developed Advanced Oxidation Technologies. Two reactors, having pilot plant sizes, are modeled to show the proposed approach. Predictions from the models are compared with experimental data obtaining reasonable good results. They provide confidence on mathematical modeling as a design methodology for homogeneous photochemical reactors.


2017 ◽  
Vol 76 (11) ◽  
pp. 3044-3053 ◽  
Author(s):  
Minghan Luo ◽  
Qiuwen Chen ◽  
Taeseop Jeong ◽  
Jing Chen

Abstract The photocatalytic degradation process has been recognized as a low-cost, environmentally friendly and sustainable technology for water and wastewater treatment. As a key carrier of the photocatalytic process, the semiconductor TiO2 has been used in many studies. Analysis and modelling of hydrodynamics in the three-phase flow system can provide useful information for process design, operation and optimization of the three-phase flow photocatalytic reactor, which requires research on the mixing and flow characteristics of the interphase regions in the reactor. In this study, we modelled the hydrodynamics in an internal air-lift circulating photocatalytic reactor using an Eulerian multi-fluid approach. Localized information on phase holdup, fluid flow patterns and mixing characteristics was obtained. The simulation results revealed that the distribution of solid particle concentration depends on the flow field in the internal air-lift circulating photocatalytic reactor. The distance between the draft tube and wall of the reactor and changes in the superficial gas velocity (Ug) were found to be influential factors in reactor performance. The computational model developed could support optimizing reactor design to improve the hydrodynamics and provide guidance for scale-up.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Laura Rancaño ◽  
Maria J. Rivero ◽  
Miguel Ángel Mueses ◽  
Inmaculada Ortiz

Although the potential and beneficial characteristics of photocatalysis in the degradation of a good number of emerging pollutants have been widely studied and demonstrated, process design and scale-up are restrained by the lack of comprehensive models that correctly describe the performance of photocatalytic reactors. Together with the kinetics of degradation reactions, the distribution of the radiation field in heterogeneous photocatalytic systems is essential to the optimum design of the technology. Both the Local Volumetric Rate of Photon Absorption (LVRPA) and the Overall Volumetric Rate of Photon Absorption (OVRPA) help to understand this purpose. This work develops a Six-Flux radiation absorption–scattering model coupled to the Henyey–Greenstein scattering phase function to evaluate the LVRPA profile in a LED-assisted photocatalytic reactor. Moreover, the OVRPA has been calculated and integrated into the kinetic equation, accounting for the influence of the radiation distribution on the reaction rate. The model has been validated with experimental data for the degradation of S-Metolachlor (MTLC), and the set of operating variables that maximize the reactor performance, 0.5 g/L of TiO2 P25 and pH 3, has been determined.


Author(s):  
Vivek V. Ranade ◽  
Raghunath V. Chaudhari ◽  
Prashant R. Gunjal
Keyword(s):  
Scale Up ◽  

BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4254-4269
Author(s):  
Jinghong Zhou ◽  
Xiaona Shang ◽  
Zhiwei Wang ◽  
Cancan Zhu ◽  
Shuangfei Wang

Bagasse spraying wastewater (BSW) is a source of organic pollutants during bagasse processing. In this study, the feasibility of anaerobic treatment of BSW under different calcium concentrations (60 to 2400 mg/L) was studied. The experiment was performed in a lab-scale up-flow multistage anaerobic reactor (UMAR) inoculated with granular sludge, and operated for 160 days at a constant organic loading rate of 6 kg COD/(m3·d). Treatment of BSW with 60 to 800 mg Ca2+/L resulted in 80.7 to 82.7% of COD removal, 161 to 232.7 mg COD/L of volatile fatty acid (VFA) yield, 0.56 to 0.79 m3/(kgCOD·d) of biogas production rate, and 2.4 to 2.66 m3/(m3·d) of volume loading rate (VLR). The pH remained within the optimal range for anaerobic digestion (adjust to pH = 6.8 to 7.0). The VFAs were composed of 77 to 85% acetic acid, 8.4 to 13.2% butyric acid, and 6.6 to 9.6% propionic acid. At higher influent calcium concentrations (> 800 mg/L), the hydrolysis process appeared to be inhibited, affecting the anaerobic digestion performance of the reactor. In particular, the COD removal efficiency decreased to 55.5%, and the VFA content in the effluent significantly increased due to the lower pH. Microbial community analysis showed that at the end of anaerobic digestion, the Syntrophobacter disappeared, and Clostridium and Anerolineaceae were the main genus and family, respectively. Overall, the results indicated that low calcium (< 300 mg/L) had a positive effect on the UMAR performance.


Author(s):  
Norbert Kockmann ◽  
Waldemar Krieger ◽  
Mira Schmalenberg

Abstract Lab-on-chip processes often require long dwelling times leading to coiled capillary reactors with laminar flow. These tubular reactors are designed for a reaction time, unfortunately with a wide residence time distribution. This contribution presents a modular concept based on coiled flow inverters (CFI), which achieve high radial mixing with narrow residence time distribution at low Reynolds numbers [1]. The modular design enables quick adaptation to changing residence times and flow rates with low pressure loss. The tube diameters range from capillaries with a few 100 μm to several millimeters for high throughput and long residence time. With the aid of a design space diagram, the required pipe diameters and lengths can be quickly determined based on standardized coil diameters [2]. The modular concept enables various arrangements for different residence time and flow rate requirements with minimum pressure loss. In the laboratory, for example, a chemical process in the throughput range of a few grams per hour can be developed and processed in the simple device. The results can be scaled via the platform concept to higher production rates with constant residence time characteristics. The scale-up concept can easily be displayed and designed graphically in the reactor performance diagram.


2008 ◽  
Vol 140 (1-3) ◽  
pp. 539-554 ◽  
Author(s):  
Chuigang Fan ◽  
Yong Zhang ◽  
Xiaotao Bi ◽  
Wenli Song ◽  
Weigang Lin ◽  
...  

Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Sign in / Sign up

Export Citation Format

Share Document