Structure and Properties of Silicone Rubber/Styrene–Butadiene Rubber Blends with in Situ Interface Coupling by Thiol-ene Click Reaction

2017 ◽  
Vol 56 (6) ◽  
pp. 1471-1477 ◽  
Author(s):  
Zheng Sun ◽  
Qiang Huang ◽  
Youzhi Wang ◽  
Liqun Zhang ◽  
Youping Wu
2011 ◽  
Vol 695 ◽  
pp. 332-335 ◽  
Author(s):  
Anyaporn Boonmahitthisud ◽  
Zheng Hua Song

In this study, rubber blend of natural rubber (NR) and styrene butadiene rubber (SBR) at 80/20 NR/SBR was reinforced with nanosilica (nSiO2) and polystyrene-encapsulated nanosilica (PS-nSiO2) in the latex state. The latex of PS-nSiO2 was synthesized by in situ differential microemulsion polymerization using sodium dodecyl sulfate and azobisisobutyronitrile as the surfactant and initiator, respectively. The nanoparticles at the amount of 0.1, 0.2, 0.3 and 0.4 parts per hundred of rubber (based on dry weight of nSiO2) were dispersed in the rubber blend compound and subsequently cured at 80°C for 3 h to prepare rubber nanocomposites. Using this technique, nanoparticles could be well dispersed in the rubber matrix. The influences of the nSiO2 and PS-nSiO2 on the mechanical and thermal properties of the resulting nanocomposites were quantified and compared. It is found that the tensile properties and thermal stability of the rubber blends were improved with the appropriate amounts of the nanofillers. However, the PS-nSiO2 exhibited reinforcing efficiency superior to nSiO2 with the same nSiO2 content due to the stronger rubber-filler interfacial adhesion.


2003 ◽  
Vol 76 (7) ◽  
pp. 234-239 ◽  
Author(s):  
Kiyoshi SUNADA ◽  
Hiroki TAKESHITA ◽  
Masamitsu MIYA ◽  
Tsukasa NAKAMURA ◽  
Katsuhiko TAKENAKA ◽  
...  

1970 ◽  
Vol 43 (6) ◽  
pp. 1332-1339 ◽  
Author(s):  
J. K. Clark ◽  
R. A. Scott

Abstract Dissolution of sulfur-cured, carbon black-loaded copolymers and their blends with cis-1,4-polybutadiene (PBD) are brought about by boiling with o-dichlorobenzene which contains a small amount of 2,2′-dibenzamidodiphenyl disulfide. The resulting slurries are subjected to a sequence of separations which include high-speed centrifugation to remove solids, and solvent precipitation followed by filtration to isolate the precipitates. The precipitates are washed with solvent to remove soluble organic materials followed by carbon disulfide washing to dissolve the polymers. Cast films of the polymers are obtained by evaporating the carbon disulfide washings onto sodium chloride discs. The infrared spectra of the cast films of these preparations are very similar to those of their respective polymers prior to loading and curing. Calculations for relative concentrations of bound styrene and PBD micro-structures permit nominal identification of the kinds of styrene-butadiene rubber and the amounts of cis-1,4-PBD used in a cured rubber formulation. Absorption bands used are near 3.35 μ for cis-1,4-PBD, 6.65 μ for bound styrene, 10.35 μ for trans-1,4-PBD; and 11.0 μ for vinyl-1,2-PBD. Efforts are being made to improve the data by using a grating infrared instrument and also to extend the calibrations to include other rubber blends.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


2018 ◽  
Vol 91 (2) ◽  
pp. 453-468 ◽  
Author(s):  
Hong-Yuan Ren ◽  
Zheng Sun ◽  
Li-Qun Zhang ◽  
You-Ping Wu ◽  
Qiang Huang ◽  
...  

ABSTRACT Two silane coupling agents, bis-(γ-triethoxysilylpropyl)-tetrasulfide (Si69) and vinyltriethoxysilane (A151), were selected to investigate their effects on structure and properties of silica-filled methyl vinyl silicone rubber (VMQ)/emulsion styrene butadiene rubber (ESBR) composites. The filler–rubber interactions were investigated via bound rubber content and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy, and the mass ratio of VMQ and ESBR in the rubber–filler gel was investigated by thermogravimetric analysis (TGA). The results revealed that VMQ showed a better compatibility with silica than ESBR. Compared with the A151 composite, the composite with Si69 showed the higher content of ESBR in rubber–filler gel, which resulted in the higher bound rubber content and the weaker Payne effect, and it also exhibited higher tensile strength, higher tear strength, better wear resistance, and lower hardness. However, the presence of Si69 reduced the crosslink efficiency of ESBR and completely inhibited the crosslinking of VMQ, which caused the composite to show higher tan δ value at 60 °C than the A151 composite.


Sign in / Sign up

Export Citation Format

Share Document