Impact of Ambient Temperature on LNG Liquefaction Process Performance: Energy Efficiency and CO2Emissions in Cold Climates

2017 ◽  
Vol 56 (12) ◽  
pp. 3388-3398 ◽  
Author(s):  
Steve Jackson ◽  
Oddmar Eiksund ◽  
Eivind Brodal
2012 ◽  
Vol 26 ◽  
pp. 49-55 ◽  
Author(s):  
N.E. Ligterink ◽  
S.V. Hageraats-Ponomareva ◽  
J.F.M. Velthuis

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3920 ◽  
Author(s):  
Mariangela Quarto ◽  
Giuliano Bissacco ◽  
Gianluca D’Urso

Several types of advanced materials have been developed to be applied in many industrial application fields to satisfy the high performance required. Despite this, research and development of process suited to machine are still limited. Due to the high mechanical properties, advanced materials are often considered as difficult to cut. For this reason, EDM (Electrical Discharge Machining) can be defined as a good option for the machining of micro components made of difficult to cut electrically conductive materials. This paper presents an investigation on the applicability of the EDM process to machine ZrB2 reinforced by SiC fibers, with assessment of process performance and energy efficiency. Different fractions of the additive SiC fibers were taken into account to evaluate the stability and repeatability of the process. Circular pocket features were machined by using a micro-EDM machine and the results from different process parameters combinations were analyzed with respect to material removal, electrode wear and cavity surface quality. Discharges data were collected and characterized to define the actual values of process parameters (peak current, pulse duration and energy per discharge). The characteristics of the pulses were used to evaluate the machinability and to investigate the energy efficiency of the process. The main process performance indicators were calculated as a function of the number of occurred discharges and the energy of a single discharge. The results show interesting aspects related to the process from both the performances and the removal mechanism point of view.


2019 ◽  
Vol 100 ◽  
pp. 00005
Author(s):  
Artur Bieniek ◽  
Łukasz Mika ◽  
Jan Kuchmacz

In response to international regulations, natural refrigerants such as carbon dioxide are more and more frequently used in the refrigeration industry. Due to thermodynamic properties, R-744 is used in the transcritical cycle as an individual refrigerant. In the hereby article, high pressure of CO2 and air temperature values were analysed. The measurements were conducted on the gas cooler side and involved external air temperature values in the summer period between 1 June to 30 September 2018. The “Booster” installation was used in one of Polish supermarkets. Correlations required to determine the optimal pressure of carbon dioxide depending on ambient temperature were presented in the article. The equations presented hereby allowed to maximize the energy efficiency ratio. An optimal high pressure for one of the correlations from literature was calculated on the basis of the measurement of ambient temperature. Actual and optimal pressure values of carbon dioxide were compared in the analysed period of time.


2020 ◽  
Vol 10 (15) ◽  
pp. 5391
Author(s):  
Sang Hyun Lee ◽  
Dong-Ha Lim ◽  
Kyungtae Park

In this study, exergy and economic analysis were conducted to gain insight on small-scale movable LNG liquefaction considering leakage. Optimization and comparison were performed to demonstrate the quantitative results of single mixed refrigerant, dual nitrogen expansion, and the propane pre-cooling self-refrigeration processes. For the optimization, exergy efficiency was used as the objective function; the results showed that exergy efficiencies are 38.85%, 19.96%, and 13.65%, for single mixed refrigerant, dual nitrogen expansion, and propane pre-cooling self-refrigeration, respectively. Further, the cost analysis showed that the product cost of each process is 4002.3 USD/tpa, 5490.2 USD/tpa, and 9608.5 USD/tpa. A sensitivity analysis was conducted to determine parameters that affect exergy and cost. The SMR process is the most competitive in terms of exergy efficiency, product cost, and operability, without considering makeup facilities.


2021 ◽  
Vol 246 ◽  
pp. 08005
Author(s):  
A.S. Strongin ◽  
A.M. Zhivov

In geographical areas with cold climates, large, massively constructed industrial and warehouse buildings and logistics complexes are large consumers of energy resources. The great height and large contained volumes of the premises, the presence of a significant number of doors, and building configurations that include many transport corridors all require the use of air-thermal curtains to increase the energy efficiency of the buildings’ heating, ventilating, and air-conditioning (HVAC) systems, which commonly produce several thousand kilowatts of thermal power. Optimization of air curtains can improve the microclimates of the premises, achieve savings in the initial construction costs, and also reduce energy consumption during operation by 10–20%.


Author(s):  
Xiao-Mei Huang ◽  
Lian-Sen Xiong ◽  
Yan-Wen Zheng ◽  
Hui-Qing Liu ◽  
Yi-Zhen Xu ◽  
...  

Abstract The moisture extraction rate (MER) and energy efficiency of domestic gas clothes dryers, heat-pump clothes dryers and electric clothes dryers were assessed. The assessment was performed with regard to five indices: the MER, specific MER, specific thermal energy consumption for dehumidification (mSPC), energy efficiency (ηt) and primary energy efficiency (η1). The effects of the dry mass of clothes (mBD) and the ambient temperature on the performance of the clothes dryers were evaluated. The experiments were divided into two parts. In the first part, the ambient temperature was 20°C, and mBD was set as 1.5, 2.5, 3.5, 4.5 and 6 kg. In the second part, mBD was 3.5 kg, and the performance of the dryers was tested at ambient temperatures of 5, 7.5, 10, 12.5, 15 and 20°C. The experimental results indicated that the gas dryer had the highest MER the heat-pump dryer had the best performance with regard to energy conservation and all three types of dryers had a higher MER and energy efficiency when the ambient temperature increased. The performance of the gas dryer was lower than that of heat-pump dryer when the temperature was 20°C. But when the temperature was < 9.5°C, the primary energy efficiency of the gas dryer was higher than that of the heat-pump dryer.


2019 ◽  
Vol 9 (20) ◽  
pp. 4467 ◽  
Author(s):  
Steven Jackson ◽  
Eivind Brodal

In carbon capture utilization and storage (CCUS) projects, the transportation of CO2 by ship can be an attractive alternative to transportation using a pipeline, particularly when the distance between the source and usage or storage location is large. However, a challenge associated with this approach is that the energy consumption of the liquefaction process can be significant, which makes the selection of an energy-efficient design an important factor in the minimization of operating costs. Since the liquefaction process operates at low temperature, its energy consumption varies with ambient temperature, which influences the trade-off point between different liquefaction process designs. A consistent set of data showing the relationship between energy consumption and cooling temperature is therefore useful in the CCUS system modelling. This study addresses this issue by modelling the performance of a variety of CO2 liquefaction processes across a range of ambient temperatures applying a methodical approach for the optimization of process operating parameters. The findings comprise a set of data for the minimum energy consumption cases. The main conclusions of this study are that an open-cycle CO2 process will offer lowest energy consumption below 20 °C cooling temperature and that over the cooling temperature range 15 to 50 °C, the minimum energy consumption for all liquefaction process rises by around 40%.


2005 ◽  
Vol 42 (04) ◽  
pp. 199-209
Author(s):  
Wilhelm Magelssen

This paper evaluates the Baltic Ice Rules developed by the Swedish/Finnish authorities and compares them with the Rules given by the Russian Register of Shipping, the Arctic Rules given by Det Norske Veritas, and voluntary requirements given in the Rules for Design Ambient Temperature (DAT). The DAT notation includes requirements for materials with special regard to the possibility of brittle fracture. The DEICE notation gives information on how to solve the icing problem. The paper also touches on areas not covered by the Rules, including icing due to splash from green water, distribution of damage due to ice, and a summary of proposals for designing a ship intended to operate in cold climates.


Sign in / Sign up

Export Citation Format

Share Document