Synergistic Modulation of Active Sites and Charge Transport: N/S Co-doped C Encapsulated NiCo2O4/NiO Hollow Microrods for Boosting Oxygen Evolution Catalysis

2020 ◽  
Vol 59 (6) ◽  
pp. 4080-4089 ◽  
Author(s):  
Yusheng Yuan ◽  
Liming Sun ◽  
Yinwei Li ◽  
Wenwen Zhan ◽  
Xiaojun Wang ◽  
...  
2020 ◽  
Vol 10 (4) ◽  
pp. 1006-1014 ◽  
Author(s):  
Rui Shang ◽  
Stephan N. Steinmann ◽  
Bo-Qing Xu ◽  
Philippe Sautet

First principles simulations show that in Fe and N co-doped carbon, Fe coordination controls the activity for oxygen reduction and oxygen evolution reactions, and that including the electrostatic potential has a major influence at high potential.


2017 ◽  
Vol 53 (59) ◽  
pp. 8372-8375 ◽  
Author(s):  
Manman Wang ◽  
Mengting Lin ◽  
Jiantao Li ◽  
Lei Huang ◽  
Zechao Zhuang ◽  
...  

Metal–organic framework derived carbon-confined Ni2P nanocrystals supported on graphene with high effective surface area, more exposed active sites, and enhanced charge transport were successfully designed.


2021 ◽  
Vol 8 (9) ◽  
pp. 202352
Author(s):  
Nguyen Duc Cuong ◽  
Tien D. Tran ◽  
Quyen T. Nguyen ◽  
Ho Van Minh Hai ◽  
Tran Thai Hoa ◽  
...  

Highly porous 3d transition metal oxide nanostructures are opening up the exciting area of oxygen evolution reaction (OER) catalysts in alkaline medium thanks to their good thermal and chemical stability, excellent physiochemical properties, high specific surface area and abundant nanopores. In this paper, highly porous Co-doped NiO nanorods were successfully synthesized by a simple hydrothermal method. The porous rod-like nanostructures were preserved with the added cobalt dopant ranging from 1 to 5 at% but were broken into aggregated nanoparticles at higher concentrations of additional cobalt. The catalytic activity of Co-doped NiO nanostructures for OER in an alkaline medium was assayed. The 5%Co-NiO sample showed a drastically enhanced activity. This result could originate from the combination of advantageous characteristics of highly porous NiO nanorods such as large surface area and high porosity as well as the important role of Co dopant that could provide more catalytic active sites, leading to an enhanced catalytic activity of the nanocatalyst.


2020 ◽  
Vol 4 (5) ◽  
pp. 1390-1396 ◽  
Author(s):  
Beibei Guo ◽  
Ruguang Ma ◽  
Zichuang Li ◽  
Jun Luo ◽  
Minghui Yang ◽  
...  

Ru and Ni co-doped Co3O4 with improved OER activity were synthesized by a one-step hydrothermal method. Ru doping increases the intrinsic activity, while Ni doping creates more oxygen vacancies and exposes more active sites.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jincan Jia ◽  
Lei Li ◽  
Xiao Lian ◽  
Mingzai Wu ◽  
Fangcai Zheng ◽  
...  

Efficient and non-precious metal-based catalysts (e.g., manganese-based oxides) for the oxygen evolution reaction (OER) still remains a huge challenge. It is rarely reported to create the oxygen vacancies of manganese-based...


2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3918
Author(s):  
Anna Dymerska ◽  
Wojciech Kukułka ◽  
Marcin Biegun ◽  
Ewa Mijowska

The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles—Ru, iridium nanoparticles—Ir, and their oxides: RuO2, IrO2, platinum—Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.


Author(s):  
Min Jiang ◽  
Wei Fan ◽  
Anquan Zhu ◽  
Pengfei Tan ◽  
Jianping Xie ◽  
...  

This work employs bacteria as precursors and induces a cost-effective biosorption strategy to obtain Fe2P@carbon nanoparticles decorated on N and P co-doped carbon (Fe2P@CNPs/NPC) materials.


2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document