A Copper(I)-Thioarsenate(III) Inorganic Framework Directed by [Ni(en)3]2+

2021 ◽  
Vol 60 (9) ◽  
pp. 6813-6819
Author(s):  
Xing Liu ◽  
Jian Zhou ◽  
Li Huang ◽  
Hong-Ping Xiao ◽  
Tatiana R. Amarante ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunpeng Song ◽  
Huanrui Yang ◽  
Feng Liu ◽  
Gary J. Cheng

AbstractThe carriers’ transportation between layers of two-dimensional (2D) perovskites is inhibited by dielectric confinement. Here, for the first time, we employ a femtosecond laser to introduce ultrafast shock pressure in the range of 0~15.45 GPa to reduce dielectric confinement by modulating the structure and exciton dynamics in a perovskite single crystal (PSCs), e.g. (F-PEA)2PbI4 (4-fluorophenethylammonium, F-PEA). The density functional theory (DFT) simulation and experimental results show that the inorganic framework distortion results in a bandgap reduction. It was found that the exciton-optical phonon coupling and free excitons (FEs) binding energy are minimized at 2.75 GPa shock pressure due to a reduction in dielectric confinement. The stability testing under various harsh light and humid thermal conditions shows that femtosecond laser shocking improves the stability of (F-PEA)2PbI4 PSCs. Femtosecond laser shock processing provides a new approach for regulating the structure and enhancing halide perovskite properties.


Author(s):  
Hai-Ying Wang ◽  
Shu-Rong Li ◽  
Xing Wang ◽  
La-Sheng Long ◽  
Xiang-Jian Kong ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Tao Zhang ◽  
Yue-Qiao Hu ◽  
Qian-Wen Li ◽  
Wei-Peng Chen ◽  
Yan-Zhen Zheng

A rare hybrid of a 3D Sn–Se type framework and a ruthenium(ii) photosensitizer has been synthesized, and exhibits visible light photocurrent response.


2002 ◽  
Vol 728 ◽  
Author(s):  
Clément Sanchez ◽  
Eduardo L. Crepaldi ◽  
Anne Bouchara ◽  
Florence Cagnol ◽  
David Grosso ◽  
...  

AbstractMesostructured transition metal (Ti, Zr, V, Al and Ce-Zr) oxide-based hybrid thin films, templated by poly(ethylene oxide)-based surfactants or block copolymers, have been prepared reproducibly, displaying 2D-hexagonal (p6m) or 2D-centred rectangular (c2m) structure. By carefully adjusting the variables involved it is possible to combine both high organisation and excellent optical quality. TiO2 and ZrO2-based materials show thermal stability up to 400-550°C. The elimination of the template can be conducted efficiently and gives rise to high surface area mesoporous films. For the other metal oxide hybrids the inorganic framework is much more fragile, and requires a precise sequence of post-treatments to be stabilised. In addition, original and homogeneous macrotextures shaped with coral-like, helical or macroporous sieves morphologies have been obtained following a nanotectonic approach based on the template-directed assembly by poly-γ-benzyl-L-glutamate (PBLG) of organically functionalised CeO2 crystalline nanoparticles.


2003 ◽  
Vol 9 (20) ◽  
pp. 5048-5055 ◽  
Author(s):  
Yu Wang ◽  
Jihong Yu ◽  
Yi Li ◽  
Zhan Shi ◽  
Ruren Xu

2019 ◽  
Vol 41 (2) ◽  
pp. 308-308
Author(s):  
Fangyan Chen Fangyan Chen ◽  
Yiming Liu Yiming Liu ◽  
Xi Zhang Xi Zhang ◽  
Lina He and Yubin Tang Lina He and Yubin Tang

In order to improve the photocatalytic efficiency and selectivity of di (2-ethylhexyl) phthalate (DEHP) under solar-driven, the inorganic-framework molecularly imprinted CdS/TiO2, named as MIP-CdS/TiO2, was prepared by using DEHP as template molecule and tetrabutyl titanate as titanium source and functional monomer. The as-prepared MIP-CdS/TiO2 was characterized by scanning electron microscopy (SEM), X-ray energy spectrum (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis Spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectrum (PL). And the specific recognition and photocatalytic selectivity of MIP-CdS/TiO2 to DEHP were investigated. The results show that inorganic-framework molecular imprinting on the surface of CdS/TiO2 can result in existence of specific recognition sites of DEHP, extend and intensify the absorption visible light of CdS/TiO2, inhibit the recombination of the photo-induced electron-holes pairs. MIP-CdS/TiO2 has a specific recognition to DEHP. The binding selectivity coefficients of DEHP relative to its analogues DBP and DMP are 2.78 and 2.60, respectively. Compared with CdS/TiO2, MIP-CdS/TiO2 exhibits higher photocatalytic activity and selectivity for DEHP. Under simulated solar light irradiation, the degradation efficiency of DEHP photocatalyzed by MIP-CdS/TiO2 is 75.5%, which is 1.63 times as high as that of DEHP photocatalyzed by CdS/TiO2.


2019 ◽  
Vol 29 (33) ◽  
pp. 1901878 ◽  
Author(s):  
Tathamay Basu ◽  
Clarisse Bloyet ◽  
Félicien Beaubras ◽  
Vincent Caignaert ◽  
Olivier Perez ◽  
...  
Keyword(s):  

2019 ◽  
Vol 5 (12) ◽  
pp. eaay0571 ◽  
Author(s):  
Haipeng Lu ◽  
Jingying Wang ◽  
Chuanxiao Xiao ◽  
Xin Pan ◽  
Xihan Chen ◽  
...  

Chiral-induced spin selectivity (CISS) occurs when the chirality of the transporting medium selects one of the two spin ½ states to transport through the media while blocking the other. Monolayers of chiral organic molecules demonstrate CISS but are limited in their efficiency and utility by the requirement of a monolayer to preserve the spin selectivity. We demonstrate CISS in a system that integrates an inorganic framework with a chiral organic sublattice inducing chirality to the hybrid system. Using magnetic conductive-probe atomic force microscopy, we find that oriented chiral 2D-layered Pb-iodide organic/inorganic hybrid perovskite systems exhibit CISS. Electron transport through the perovskite films depends on the magnetization of the probe tip and the handedness of the chiral molecule. The films achieve a highest spin-polarization transport of up to 86%. Magnetoresistance studies in modified spin-valve devices having only one ferromagnet electrode confirm the occurrence of spin-dependent charge transport through the organic/inorganic layers.


Sign in / Sign up

Export Citation Format

Share Document