The mTORC1/4EBP1/PPARγ Axis Mediates Insulin-Induced Lipogenesis by Regulating Lipogenic Gene Expression in Bovine Mammary Epithelial Cells

2019 ◽  
Vol 67 (21) ◽  
pp. 6007-6018
Author(s):  
Zhixin Guo ◽  
Xiaoou Cheng ◽  
Xue Feng ◽  
Keyu Zhao ◽  
Meng Zhang ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zhixin Guo ◽  
Keyu Zhao ◽  
Xue Feng ◽  
Dandan Yan ◽  
Ruiyuan Yao ◽  
...  

The mechanistic target of rapamycin complex 2 (mTORC2) primarily functions as an effector of insulin/PI3K signaling to regulate cell proliferation and is associated with cell metabolism. However, the function of mTORC2 in lipid metabolism is not well understood. In the present study, mTORC2 was inactivated by the ATP-competitive mTOR inhibitor AZD8055 or shRNA targeting RICTOR in primary bovine mammary epithelial cells (pBMECs). MTT assay was performed to examine the effect of AZD8055 on cell proliferation. ELISA assay and GC-MS analysis were used to determine the content of lipid. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. We found that cell proliferation, mTORC2 activation, and lipid secretion were inhibited by AZD8055. RICTOR was knocked down and mTORC2 activation was specifically attenuated by the shRNA. Compared to control cells, the expression of the transcription factor gene PPARG and the lipogenic genes LPIN1, DGAT1, ACACA, and FASN was downregulated in RICTOR silencing cells. As a result, the content of intracellular triacylglycerol (TAG), palmitic acid (PA), docosahexaenoic acid (DHA), and other 16 types of fatty acid was decreased in the treated cells; the accumulation of TAG, PA, and DHA in cell culture medium was also reduced. Overall, mTORC2 plays a critical role in regulating lipogenic gene expression, lipid synthesis, and secretion in pBMECs, and this process probably is through PPARγ. This finding provides a model by which lipogenesis is regulated in pBMECs.


2012 ◽  
Vol 57 (No. 10) ◽  
pp. 469-480 ◽  
Author(s):  
T. Sigl ◽  
H.H.D. Meyer ◽  
S. Wiedemann

&nbsp;The objective of the present study was to refine a previously developed method to isolate primary bovine mammary epithelial cells (pBMEC) from fresh milk. Using this method, it was tested whether the number of pBMEC and the relation of recovered pBMEC to total somatic cell count vary within the individual lactation stages. Furthermore, the expression levels of the milk protein genes during the first twenty weeks of lactation were determined by quantitative PCR method. A total number of 152 morning milk samples were obtained from twenty-four Holstein-Friesian cows during the first 20 weeks of lactation (day 8, 15, 26, 43, 57, 113, and 141 postpartum). Numbers of extracted pBMEC were consistent at all time-points (1.1 &plusmn; 0.06 to 1.4 &plusmn; 0.03 &times;10<sup>3</sup>/ml) and an average value of RNA integrity number (RIN) was 6.3 &plusmn; 0.3. Percentage of pBMEC in relation to total milk cells (2.0 &plusmn; 0.2 to 6.7 &plusmn; 1.0%) correlated with milk yield. Expression patterns of the casein genes alpha (&alpha;)<sub>S1</sub>, (&alpha;)<sub>S2</sub>, beta (&beta;), and kappa (&kappa;) (CSN1S1, CSN1S2, CSN2, CSN3, respectively) and the whey protein genes &alpha;-lactalbumin (LALBA) and progestagen-associated endometrial protein (PAEP; known as &beta;-lactoglobulin) were shown to be comparable, i.e. transcripts of all six milk protein genes were found to peak during the first two weeks of lactation and to decline continuously towards mid lactation. However, mRNA levels were different among genes with CSN3 showing the highest and LALBA the lowest abundance. We hypothesized that milk protein gene expression has a pivotal effect on milk protein composition with no influence on milk protein concentration. This paper is the first to describe milk protein gene expression during lactation in pBMEC collected in milk. Future studies will be needed to understand molecular mechanisms in pBMEC including regulation of expression and translation throughout lactation. &nbsp;


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 519-519
Author(s):  
Y. Suzuki ◽  
S. Chiba ◽  
S. Haga ◽  
S. Roh

2019 ◽  
Vol 131 ◽  
pp. 15-21
Author(s):  
Minerva Frutis-Murillo ◽  
Marcelo Alejandro Sandoval-Carrillo ◽  
Nayeli Alva-Murillo ◽  
Alejandra Ochoa-Zarzosa ◽  
Joel E. López-Meza

Sign in / Sign up

Export Citation Format

Share Document