Phytochemical Investigation of the Roots of Ipomoea asarifolia and Antiproliferative Activity of the Isolated Compounds against Multiple Myeloma Cells

Author(s):  
Noémie Saraux ◽  
Deniza Imeri ◽  
Luis Quirós-Guerrero ◽  
Soumana Karimou ◽  
Philippe Christen ◽  
...  
Author(s):  
Alessia Caso ◽  
Ilaria Laurenzana ◽  
Daniela Lamorte ◽  
Stefania Trino ◽  
Germana Esposito ◽  
...  

Smenamides are an intriguing class of peptide/polyketide molecules of marine origin showing antiproliferative activity against lung cancer Calu-1 cells at nanomolar concentrations through a clear pro-apoptotic mechanism. To probe the role of the activity-determining structural features, the 16-epi-analogue of smenamide A and eight simplified analogues in the 16-epi series were prepared using a flexible synthetic route. The synthetic analogues were tested on multiple myeloma (MM) cell lines showing that the configuration at C-16 slightly affects the activity, since the 16-epi-derivative is still active at nanomolar concentrations. Interestingly, it was found that the truncated compound 8, mainly composed of the pyrrolinone terminus, was not active while compound 17, essentially lacking the pyrrolinone moiety, was 1000-fold less active than the intact substance and was the most active among all the synthesized compounds.


2020 ◽  
Vol 18 (3) ◽  
pp. 241-246
Author(s):  
Yu Dan ◽  
Wan Sheng ◽  
Hu Lili

This study aimed to investigate the mechanism of betulinic acid on multiple myeloma cell resistance to bortezomib. To this end, the bortezomib-resistant RPMI-8226-R cells were generated by prolonged treatment of RPMI-8226 cells with increasing concentrations of bortezomib. Based on the measurements of cell viability and colony number, RPMI-8226-R cells exhibited enhanced resistance to bortezomib than RPMI-8226 cells. Treatment with betulinic acid resulted in increased sensitivity of RPMI-8226-R to bortezomib. When RPMI-8226-R cells were co-treated with bortezomib and betulinic acid, there was an increase in apoptosis rate, cleaved caspase-3, cleaved caspase-9 expression and the decrease in p-AKT/AKT and p-mTOR/mTOR levels. These results suggest that betulinic acid enhances the sensitivity of RPMI-8226-R cells to bortezomib by inhibiting the activation of the AKT/mTOR pathway in bortezomib-resistant multiple myeloma cells.


2005 ◽  
Vol 65 (16) ◽  
pp. 7478-7484 ◽  
Author(s):  
Hiroshi Yasui ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Aldo M. Roccaro ◽  
Norihiko Shiraishi ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 416
Author(s):  
Sami I. Alzarea ◽  
Abeer H. Elmaidomy ◽  
Hani Saber ◽  
Arafa Musa ◽  
Mohammad M. Al-Sanea ◽  
...  

LC-MS-assisted metabolomic profiling of the Red Sea-derived brown algae Sargassum cinereum “Sargassaceae” dereplicated eleven compounds 1–11. Further phytochemical investigation afforded two new aryl cresol 12–13, along with eight known compounds 14–21. Both new metabolites, along with 19, showed moderate in vitro antiproliferative activity against HepG2, MCF-7, and Caco-2. Pharmacophore-based virtual screening suggested both 5-LOX and 15-LOX as the most probable target linked to their observed antiproliferative activity. The in vitro enzyme assays revealed 12 and 13 were able to inhibit 5-LOX more preferentially than 15-LOX, while 19 showed a convergent inhibitory activity toward both enzymes. Further in-depth in silico investigation revealed the molecular interactions inside both enzymes’ active sites and explained the varying inhibitory activity for 12 and 13 toward 5-LOX and 15-LOX.


Oncogene ◽  
2021 ◽  
Author(s):  
Yinyin Xu ◽  
Jing Guo ◽  
Jing Liu ◽  
Ying Xie ◽  
Xin Li ◽  
...  

AbstractMyeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.


Leukemia ◽  
2015 ◽  
Vol 29 (10) ◽  
pp. 2039-2049 ◽  
Author(s):  
I S Nijhof ◽  
R W J Groen ◽  
H M Lokhorst ◽  
B van Kessel ◽  
A C Bloem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document