PTML Model for Proteome Mining of B-Cell Epitopes and Theoretical–Experimental Study of Bm86 Protein Sequences from Colima, Mexico

2017 ◽  
Vol 16 (11) ◽  
pp. 4093-4103 ◽  
Author(s):  
Saúl G. Martínez-Arzate ◽  
Esvieta Tenorio-Borroto ◽  
Alberto Barbabosa Pliego ◽  
Héctor M. Díaz-Albiter ◽  
Juan C. Vázquez-Chagoyán ◽  
...  
2021 ◽  
Author(s):  
Deepa Kumari ◽  
Namrata Kumari ◽  
Sudhir Kumar ◽  
Prabhat Kumar Sinha ◽  
Shivendra Kumar Shahi ◽  
...  

SARS-CoV-2, the causative agent of COVID-19 has mutated rapidly which enabled them to adapt and evade the immune system of the host. Emerging SARS-CoV-2 variants with crucial mutations pose a global challenge in context of therapeutic drugs and vaccines being developed globally. There are currently no specific therapeutics or vaccines available to combat SARS-CoV-2 devastation. In view of this, the current study aimed to identify and characterize the mutations found in the Nsp13 of SARS-CoV-2 in Indian isolates. Non-structural protein, Nsp13 protein sequences from Indian isolates were analyzed by comparing with the first reported Severe acute respiratory syndrome Corona Virus-2 (SARS-CoV-2) protein sequence from Wuhan, China. Out of 825 Nsp13 protein sequences, a total of 38 mutations were observed among Indian isolates. Our data show that mutations in Nsp13 at various positions (H164Y, A237T, T214I, C309Y, S236I, P419S, V305E, G54S, H290Y, P53S, A308Y, and A308Y) have a significant impact on the protein's stability and flexibility. Also, the impact of Nsp13 mutations on the protein function were predicted based on PROVEAN score that includes 15 mutants as neutral and 23 mutants as deleterious effect. Furthermore, B-cell epitopes contributed by Nsp13 were identified using various predictive immunoinformatic tools. Immunological Parameters of Nsp13 such as antigenicity, allergenicity and toxicity were evaluated to predict the potential B-cell epitopes. The predicted peptide sequences were correlated with the observed mutants. Our predicted data showed that there are seven high rank linear epitopes as well as 18 discontinuous B-cell epitopes based on immunoinformatic tools. Moreover, it was observed that out of total 38 identified mutations among Indian SARS-CoV-2 Nsp13 protein, four mutant residues at position 142 (E142), 245 (H245), 247 (V247) and 419 (P419) are localised in the predicted B cell epitopic region. Altogether, the results of the present in-silico study might help to understand the impact of the identified mutations in Nsp13 protein on its stability, flexibility and function.


2006 ◽  
Vol 04 (02) ◽  
pp. 389-402 ◽  
Author(s):  
ELENA SVIRSHCHEVSKAYA ◽  
LUDMILA ALEKSEEVA ◽  
ALEXEI MARCHENKO ◽  
SERGEI BENEVOLENSKII ◽  
VALENTINA M. BERZHEC ◽  
...  

Sub-unit vaccines are synthetic or recombinant peptides representing T- or B-cell epitopes of major protein antigens from a particular pathogen. Epitope selection requires the synthesis of peptides that overlap the protein sequences and screening for the most effective ones. In this study a new method of immunogenic peptide selection based on the analysis of information structure of protein sequences is suggested. The analysis of known B-cell epitope location in the information structure of Aspergillus fumigatus proteins Asp f 2 and Asp f 3 has shown that epitopes are scattered along the sequences of proteins for the exception of sites with Increased Degree Information Coordination (IDIC). Based on these results peptides from different allergens such as Asp f 2, Der p 1, and Fel d 1 were selected and produced in a recombinant form in the context of yeast virus-like particles (VLPs). Immunization of mice with VLPs containing peptides form allergens has induced the production of IgG able to recognize full-length antigens. This result suggests that the analysis of information structure of proteins can be used for the selection of peptides possessing cryptic B-cell epitope activity.


Author(s):  
Elio Issa ◽  
Georgi Merhi ◽  
Balig Panossian ◽  
Tamara Salloum ◽  
Sima Tokajian

AbstractThe effect of the rapid accumulation of non-synonymous mutations on the pathogenesis of SARS-CoV-2 is not yet known. To predict the impact of non-synonymous mutations and polyproline regions identified in ORF3a on the formation of B-cell epitopes and their role in evading the immune response, nucleotide and protein sequences of 537 available SARS-CoV-2 genomes were analyzed for the presence of non-synonymous mutations and polyproline regions. Mutations were correlated with changes in epitope formation. A total of 19 different non-synonymous amino acids substitutions were detected in ORF3a among 537 SARS-CoV-2 strains. G251V was the most common and identified in 9.9% (n=53) of the strains and was predicted to lead to the loss of a B-cell like epitope in ORF3a. Polyproline regions were detected in two strains (EPI_ISL_410486, France and EPI_ISL_407079, Finland) and affected epitopes formation. The accumulation of non-synonymous mutations and detected polyproline regions in ORF3a of SARS-CoV-2 could be driving the evasion of the host immune response thus favoring viral spread. Rapid mutations accumulating in ORF3a should be closely monitored throughout the COVID-19 pandemic.ImportanceAt the surge of the COVID-19 pandemic and after three months of the identification of SARS-CoV-2 as the disease-causing pathogen, nucleic acid changes due to host-pathogen interactions are insightful into the evolution of this virus. In this paper, we have identified a set of non-synonymous mutations in ORF3a and predicted their impact on B-cell like epitope formation. The accumulation of non-synonymous mutations in ORF3a could be driving protein changes that mediate immune evasion and favoring viral spread.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 52
Author(s):  
Hassan Moeini ◽  
Suliman Qadir Afridi ◽  
Sainitin Donakonda ◽  
Percy A. Knolle ◽  
Ulrike Protzer ◽  
...  

Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be considered for the development of an effective vaccine. In this study, we identify and characterize linear blockade B-cell epitopes in HuNoV GII.4. Five unique linear B-cell epitopes, namely P2A, P2B, P2C, P2D, and P2E, were predicted on the surface-exposed regions of the capsid protein. Evolving of the surface-exposed epitopes over time was found to correlate with the emergence of new GII.4 outbreak variants. Molecular dynamic simulation (MD) analysis and molecular docking revealed that amino acid substitutions in the putative epitopes P2B, P2C, and P2D could be associated with immune escape and the appearance of new GII.4 variants by affecting solvent accessibility and flexibility of the antigenic sites and histo-blood group antigens (HBAG) binding. Testing the synthetic peptides in wild-type mice, epitopes P2B (336–355), P2C (367–384), and P2D (390–400) were recognized as GII.4-specific linear blockade epitopes with the blocking rate of 68, 55 and 28%, respectively. Blocking rate was found to increase to 80% using the pooled serum of epitopes P2B and P2C. These data provide a strategy for expanding the broad blockade potential of vaccines for prevention of NoV infection.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 438
Author(s):  
Jean Harb ◽  
Nicolas Mennesson ◽  
Cassandra Lepetit ◽  
Maeva Fourny ◽  
Margaux Louvois ◽  
...  

Chronic stimulation by infectious pathogens or self-antigen glucosylsphingosine (GlcSph) can lead to monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Novel assays such as the multiplex infectious antigen microarray (MIAA) and GlcSph assays, permit identification of targets for >60% purified monoclonal immunoglobulins (Igs). Searching for additional targets, we selected 28 purified monoclonal Igs whose antigen was not represented on the MIAA and GlcSph assays; their specificity of recognition was then analyzed using microarrays consisting of 3760 B-cell epitopes from 196 pathogens. The peptide sequences PALTAVETG and PALTAAETG of the VP1 coat proteins of human poliovirus 1/3 and coxsackievirus B1/B3, respectively, were specifically recognized by 6/28 monoclonal Igs. Re-analysis of patient cohorts showed that purified monoclonal Igs from 10/155 MGUS/SM (6.5%) and 3/147 MM (2.0%) bound to the PALTAVETG or PALTAAETG epitopes. Altogether, PALTAV/AETG-initiated MGUS are not rare and few seem to evolve toward myeloma.


Author(s):  
Xiaohui Wang ◽  
Joy-Yan Lam ◽  
Linlei Chen ◽  
Shannon Wing-Ngor Au ◽  
Kelvin K. W. To ◽  
...  
Keyword(s):  
B Cell ◽  

Author(s):  
Shahab Mahmoudvand ◽  
Somayeh Shokri ◽  
Manoochehr Makvandi ◽  
Reza Taherkhani ◽  
Mohammad Rashno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document