Loading a High-Viscous Droplet via the Cone-Shaped Liquid Bridge Induced by an Electrostatic Force

Langmuir ◽  
2021 ◽  
Vol 37 (7) ◽  
pp. 2334-2340
Author(s):  
Xiao-yu Xu ◽  
Zheng Xu ◽  
Xiao-dong Wang ◽  
Shao-chun Qin ◽  
Yan-wen Qian ◽  
...  
Nanoscale ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 9517-9523 ◽  
Author(s):  
Huizhen Fan ◽  
Yu Fan ◽  
Wenna Du ◽  
Rui Cai ◽  
Xinshuang Gao ◽  
...  

ICG forms aggregates in positively charged mesoporous silica, which show an enhanced type I photoreaction pathway.


Author(s):  
Fenglei Du ◽  
Greg Bridges ◽  
D.J. Thomson ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
...  

Abstract With the ever-increasing density and performance of integrated circuits, non-invasive, accurate, and high spatial and temporal resolution electric signal measurement instruments hold the key to performing successful diagnostics and failure analysis. Sampled electrostatic force microscopy (EFM) has the potential for such applications. It provides a noninvasive approach to measuring high frequency internal integrated circuit signals. Previous EFMs operate using a repetitive single-pulse sampling approach and are inherently subject to the signal-to-noise ratio (SNR) problems when test pattern duty cycle times become large. In this paper we present an innovative technique that uses groups of pulses to improve the SNR of sampled EFM systems. The approach can easily provide more than an order-ofmagnitude improvement to the SNR. The details of the approach are presented.


2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Mohsen Torabi ◽  
Ahmed A. Hemeda ◽  
James W. Palko ◽  
Yu Feng ◽  
Yong Cao ◽  
...  
Keyword(s):  

Author(s):  
Xiangqi Li ◽  
Dengfei Wang ◽  
Fenglei Huang ◽  
Ziqi Cai ◽  
Zhengming Gao

2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Paolo Capobianchi ◽  
Marcello Lappa

AbstractSystems of solid particles in suspension driven by a time-periodic flow tend to create structures in the carrier fluid that are reminiscent of highly regular geometrical items. Within such a line of inquiry, the present study provides numerical results in support of the space experiments JEREMI (Japanese and European Research Experiment on Marangoni flow Instabilities) planned for execution onboard the International Space Station. The problem is tackled by solving the unsteady non-linear governing equations for the same conditions that will be established in space (microgravity, 5 cSt silicone oil and different aspect ratios of the liquid bridge). The results reveal that for a fixed supporting disk radius, the dynamics are deeply influenced by the height of the liquid column. In addition to its expected link with the critical threshold for the onset of instability (which makes Marangoni flow time-periodic), this geometrical parameter can have a significant impact on the emerging waveform and therefore the topology of particle structures. While for shallow liquid bridges, pulsating flows are the preferred mode of convection, for tall floating columns the dominant outcome is represented by rotating fluid-dynamic disturbance. In the former situation, particles self-organize in circular sectors bounded internally by regions of particle depletion, whereas in the latter case, particles are forced to accumulate in a spiral-like structure. The properties of some of these particle attractors have rarely been observed in earlier studies concerned with fluids characterized by smaller values of the Prandtl number.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1357
Author(s):  
Linxiao Cong ◽  
Jianchao Mu ◽  
Qian Liu ◽  
Hao Wang ◽  
Linlin Wang ◽  
...  

The space gravitational wave detection and drag free control requires the micro-thruster to have ultra-low thrust noise within 0.1 mHz–0.1 Hz, which brings a great challenge to calibration on the ground because it is impossible to shield any spurious couplings due to the asymmetry of torsion balance. Most thrusters dissipate heat during the test, making the rotation axis tilt and components undergo thermal drift, which is hysteretic and asymmetric for micro-Newton thrust measurement. With reference to LISA’s research and coming up with ideas inspired from proportional-integral-derivative (PID) control and multi-timescale (MTS), this paper proposes to expand the state space of temperature to be applied on the thrust prediction based on fine tree regression (FTR) and to subtract the thermal noise filtered by transfer function fitted with z-domain vector fitting (ZDVF). The results show that thrust variation of diurnal asymmetry in temperature is decoupled from 24 μN/Hz1/2 to 4.9 μN/Hz1/2 at 0.11 mHz. Additionally, 1 μN square wave modulation of electrostatic force is extracted from the ambiguous thermal drift background of positive temperature coefficient (PTC) heater. The PID-FTR validation is performed with experimental data in thermal noise decoupling, which can guide the design of thermal control and be extended to other physical quantities for noise decoupling.


Sign in / Sign up

Export Citation Format

Share Document