Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation

Langmuir ◽  
2021 ◽  
Vol 37 (8) ◽  
pp. 2649-2657
Author(s):  
Huaixuan Cao ◽  
Maria Escamilla ◽  
Kailash Dhondiram Arole ◽  
Dustin Holta ◽  
Jodie L. Lutkenhaus ◽  
...  
Keyword(s):  
2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


1962 ◽  
Vol 18 (1) ◽  
pp. 27-30 ◽  
Author(s):  
GEORGE T. MILLS ◽  
EVELYN E. B. SMITH
Keyword(s):  

Biofilms ◽  
2005 ◽  
Vol 2 (2) ◽  
pp. 129-144 ◽  
Author(s):  
D. S. Domozych ◽  
S. Kort ◽  
S. Benton ◽  
T. Yu

The desmid Penium margaritaceum is a common resident of biofilms of shallow Adirondack wetlands in New York State, USA. It was isolated and grown in the laboratory where it readily formed biofilms and produced large amounts of extracellular polymeric substance (EPS). The EPS was separated into two fractions: an EPS gel and soluble EPS. Both fractions were rich in xylose, fucose and glucuronic acid. The EPS gels contained large amounts of 3-linked, 4-linked and 3,4-linked fucose, 3,4-linked glucuronic acid and terminal xylose linkages. The EPS gel consisted of a fibrillar matrix that linked cells and cell substrate together. Immunofluorescence analysis using an anti-EPS antibody revealed that EPS secretion occurs in several different modes, which contributes to initial adhesion, capsule formation and gliding.


2008 ◽  
Vol 367 (4) ◽  
pp. 736-742 ◽  
Author(s):  
Masashi Shimazaki ◽  
Akira Kudo
Keyword(s):  

1998 ◽  
Vol 273 (37) ◽  
pp. 23668-23673 ◽  
Author(s):  
Volker Nickel ◽  
Sabine Prehm ◽  
Manfred Lansing ◽  
Andreas Mausolf ◽  
Andreas Podbielski ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6699
Author(s):  
Salwinder Singh Dhaliwal ◽  
Vivek Sharma ◽  
Arvind Kumar Shukla ◽  
Vibha Verma ◽  
Sanjib Kumar Behera ◽  
...  

To achieve the nutritional target of human food, boron (B) has been described as an essential mineral in determining seed and theoretical oil yield of Sesamum indicum L. The research to increase its cultivation is garnering attention due to its high oil content, quality and its utilization for various purposes, which include human nutrition as well as its use in the food industry. For this, a two-year field experiment was performed at PAU, Punjab, India to determine the effect of different concentrations of foliar-applied B (20, 30 and 40 mg L−1) and different growth stages of crop, i.e., we measured the effects on agroeconomic indicators and certain quality parameters of sesame using different concentrations of B applied at the flowering and capsule formation stages as compared to using water spray and untreated plants. Water spray did not significantly affect the studied parameters. However, B application significantly increased the yield, uptake, antioxidant activity (AOA) and theoretical oil content (TOC) compared to those of untreated plants. The maximum increase in seed yield (26.75%), B seed and stover uptake (64.08% and 69.25%, respectively) as well as highest AOA (69.41%) and benefit to cost ratio (B:C ratio 2.63) was recorded when B was applied at 30 mg L−1 at the flowering and capsule formation stages. However, the maximum sesame yield and B uptake were recorded when B was applied at a rate of 30 mg L−1. A significant increase in TOC was also recorded with a B application rate of 30 mg L−1. For efficiency indices, the higher values of boron agronomic efficiency (BAE) and boron crop recovery efficiency (BCRE) were recorded when B was applied at 20 mg L−1 (5.25 and 30.56, respectively) and 30 mg L−1 (4.96 and 26.11, respectively) at the flowering and capsule formation stages. In conclusion, application of B @ 30 mg L−1 at the flowering and capsule formation stages seemed a viable technique to enhance yield, B uptake and economic returns of sesame.


Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 1-24
Author(s):  
Joseph R. McPhee ◽  
Thomas R. Van De Water

The otocyst is the epithelial anlage of the membranous labyrinth which interacts with surrounding cephalic mesenchyme to form an otic capsule. A series of in vitro studies was performed to gain a better understanding of the epithelial—mesenchymal interactions involved in this process. Parallel series of otocyst/mesenchyme (O/M) and isolated periotic mesenchyme (M) explants provided morphological and biochemical data to define the role of the otocyst in organizing and directing formation of its cartilaginous otic capsule. Explants were made from mouse embryos ranging in age from 10 to 14 days of gestation, and organ cultured under identical conditions until the chronological equivalent of 16 days of gestation. Expression of chrondrogenesis was determined by both histology and biochemistry. The in vitro behaviour of periotic mesenchyme explanted either with or without an otocyst supports several hypotheses that explain aspects of otic capsule development. The results indicate that (a) prior to embryonic day 12 the otocyst alone is not sufficient to stimulate chondrogenesis of the otic capsule within O/M explants; (b) the otocyst acts as an inductor of capsule chondrogenesis within O/M explants between embryonic days 12 to 13; (c) isolated mesenchyme within M explants taken from 13-day-old embryos are capable of initiating in vitro chondrogenesis, but without expressing capsule morphology in the absence of the otocyst; and (d) the isolated mesenchyme of M explants obtained from 14-day-old embryos expresses both chondrogenesis and otic capsule morphology in the absence of the otocyst. These findings suggest that the otocyst acts as an inductor of chondrogenesis of periotic mesenchyme tissue between embryonic days 11 to 13, and controls capsular morphogenesis between embryonic days 13 to 14 in the mouse embryo.


Sign in / Sign up

Export Citation Format

Share Document