Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study

Langmuir ◽  
2015 ◽  
Vol 31 (50) ◽  
pp. 13618-13624 ◽  
Author(s):  
Marie Lucas ◽  
Jean-François Boily
Author(s):  
William W. F. Chong ◽  
Hedong Zhang

Using Molecular Dynamics (MD) simulation, the current study determined the surface forces between iron oxide surfaces when immersed in methyl oleate. Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field was used to model the methyl oleate molecules. For the nano-confinement simulation, the iron oxide wall was modelled from its crystal structure. The nano-confinement simulation model was setup in a manner where the confined methyl oleate molecules were in contact with the bulk molecules surrounding each side of the iron oxide walls. Through the simulation, the load-separation gap profile was obtained by reducing the separation gap between the ferric oxide walls. When the separation gap was reduced from 2.75 nm to 1.88 nm, the load is shown to increase monotonically. Such increase in load bearing ability of the contact is observed to correspond to a more densely packed methyl oleate molecules, reflected by four well-formed layers across the separation gap. As the gap is dropped from 1.88 nm to 1.63 nm, the load instead reduces, indicating deteriorating load bearing ability of the contact. However, the load bearing ability of the contact is then shown to recover when the gap was further reduced till 1.38 nm. This oscillatory load trend is shown to be as a result of a layer of methyl oleate molecules being squeezed out of contact, corroborated by the density profile change where four well-formed layers were reduced to only three layers from 1.88 nm to 1.38 nm gap. This also indicates that the simulated contact exhibits structural forces, known as solvation forces. Thus, the MD simulation discussed in this study is demonstrated to be capable of providing a foundation to allow for a multi-scale simulation, integrating various force laws at different length scales, to study larger scale tribological contacts.


Author(s):  
Trinh Tuan Anh ◽  
Bui Thi Hang

To find a suitable material for Fe-air battery anode, Fe2O3 nanoparticles (nm) and microparticles (µm) were used as active materials and Acetylene Black carbon (AB) as additive to prepare Fe2O3/AB composites. The effect of grain size of iron oxide particles and additives on the electrochemical behavior of Fe2O3/AB composite electrodes in alkaline solution have been investigated using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS) measurements. Iron oxide nanoparticles provided better cyclability than iron oxide microparticles. Impedance of electrode increased during cycling but the nm-Fe2O3/AB electrode gave smaller resistance than µm-Fe2O3/AB one. The additives showed strongly effects on the electrochemical behaviors of iron oxide electrodes. The AB additive enhanced the electric conductivity of Fe2O3/AB electrode and thus increased the redox reaction rate of iron oxide while K2S interacted and broke down the passive layer leading to improved cyclability and giving higher capacity for Fe2O3/AB electrodes.


2017 ◽  
Vol 7 ◽  
pp. 413-419 ◽  
Author(s):  
N. Idusuyi ◽  
O.O. Ajide ◽  
O.O. Oluwole ◽  
O.A. Arotiba

2018 ◽  
Vol 528 ◽  
pp. 263-270 ◽  
Author(s):  
Mohammad Yaser Khani Meynaq ◽  
Britta Lindholm-Sethson ◽  
Solomon Tesfalidet

Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 835 ◽  
Author(s):  
Zhaotian Cai ◽  
Yabing Ye ◽  
Xuan Wan ◽  
Jun Liu ◽  
Shihui Yang ◽  
...  

Various morphologies of iron oxide nanoparticles (Fe2O3 NPs), including cubic, thorhombic and discal shapes were synthesized by a facile meta-ion mediated hydrothermal route. To further improve the electrochemical sensing properties, discal Fe2O3 NPs with the highest electrocatalytic activity were coupled with graphene oxide (GO) nanosheets. The surface morphology, microstructures and electrochemical properties of the obtained Fe2O3 NPs and Fe2O3/GO nanohybrids were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. As expected, the electrochemical performances were found to be highly related to morphology. The discal Fe2O3 NPs coupled with GO showed remarkable electrocatalytic activity toward the oxidation of dopamine (DA) and uric acid (UA), due to their excellent synergistic effect. The electrochemical responses of both DA and UA were linear to their concentrations in the ranges of 0.02–10 μM and 10–100 μM, with very low limits of detection (LOD) of 3.2 nM and 2.5 nM for DA and UA, respectively. Moreover, the d-Fe2O3/GO nanohybrids showed good selectivity and reproducibility. The proposed d-Fe2O3/GO/GCE realized the simultaneous detection of DA and UA in human serum and urine samples with satisfactory recoveries.


Sign in / Sign up

Export Citation Format

Share Document