scholarly journals Electrochemical properties of Fe2O3/AB based composite electrodes in alkaline solution

Author(s):  
Trinh Tuan Anh ◽  
Bui Thi Hang

To find a suitable material for Fe-air battery anode, Fe2O3 nanoparticles (nm) and microparticles (µm) were used as active materials and Acetylene Black carbon (AB) as additive to prepare Fe2O3/AB composites. The effect of grain size of iron oxide particles and additives on the electrochemical behavior of Fe2O3/AB composite electrodes in alkaline solution have been investigated using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS) measurements. Iron oxide nanoparticles provided better cyclability than iron oxide microparticles. Impedance of electrode increased during cycling but the nm-Fe2O3/AB electrode gave smaller resistance than µm-Fe2O3/AB one. The additives showed strongly effects on the electrochemical behaviors of iron oxide electrodes. The AB additive enhanced the electric conductivity of Fe2O3/AB electrode and thus increased the redox reaction rate of iron oxide while K2S interacted and broke down the passive layer leading to improved cyclability and giving higher capacity for Fe2O3/AB electrodes.

2018 ◽  
Vol 56 (1) ◽  
pp. 24
Author(s):  
Trinh Tuan Anh ◽  
Doan Ha Thang ◽  
Bui Thi Hang

Acetylene Black (AB) and Fe2O3 nanoparticles were used as the additive and active materials, respectively for preparing Fe2O3/AB composite electrode. The effects of carbon additive and binder content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated to find the suitable anode for the Fe/air battery. The results of electrochemical measurements showed that both the AB additive and binder content significantly affected on the electrochemical behaviors of Fe2O3/AB electrodes. AB additive improves in redox reaction of iron oxide.


2016 ◽  
Vol 73 (12) ◽  
pp. 3064-3071 ◽  
Author(s):  
Ju-Young Lee ◽  
Nantanee Chaimongkalayon ◽  
Jinho Lim ◽  
Heung Yong Ha ◽  
Seung-Hyeon Moon

Abstract Affordable carbon composite electrodes were developed to treat low-concentrated groundwater using capacitive deionization (CDI). A carbon slurry prepared using activated carbon powder (ACP), poly(vinylidene fluoride), and N-methyl-2-pyrrolidone was employed as a casting solution to soak in a low-cost porous substrate. The surface morphology of the carbon composite electrodes was investigated using a video microscope and scanning electron microscopy. The capacitance and electrical conductivity of the carbon composite electrodes were then examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. According to the CV and EIS measurements, the capacitances and electrical conductivities of the carbon composite electrodes were in the range of 8.35–63.41 F g–1 and 0.298–0.401 S cm–1, respectively, depending on ACP contents. A CDI cell was assembled with the carbon composite electrodes instead of with electrodes and current collectors. The arsenate removal test included an investigation of the optimization of several important operating parameters, such as applied voltage and solution pH, and it achieved 98.8% removal efficiency using a 1 mg L–1 arsenate solution at a voltage of 2 V and under a pH 9 condition.


2004 ◽  
Vol 835 ◽  
Author(s):  
Vincenzo Esposito ◽  
Enrico Traversa ◽  
Eric D. Wachsman

ABSTRACTNanometric pyrochlore lead ruthenate (Pb2Ru2O6.5) powders were prepared using a new chemical route as a possible candidate for cathode materials in solid oxide fuel cells (SOFCs). Pb2Ru2O6.5 was mixed with yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB) to fabricate porous composite electrodes. Pure pyrochlore or composite electrodes were deposited as thick films onto YSZ and ESB electrolytes. Powders and films were analyzed using X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FE-SEM). Electrochemical features of the electrodes were investigated using electrochemical impedance spectroscopy (EIS) measurements at different temperatures in air for symmetric cells. The composite electrodes were compared to single Pb2Ru2O6.5 phase electrodes to evaluate the effect on polarization of the addition of the pure ionic conductor phase in the electrodes.


2021 ◽  
Vol 23 (3) ◽  
pp. 1248-1258
Author(s):  
Shannon M. North ◽  
Steven P. Armes

An atom-efficient, wholly aqueous one-pot synthesis of zwitterionic diblock copolymers has been devised. Such copolymers can serve as highly effective aqueous dispersants for nano-sized transparent yellow iron oxide particles.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 571
Author(s):  
Aurelia Elena Tudose ◽  
Ioana Demetrescu ◽  
Florentina Golgovici ◽  
Manuela Fulger

The aim of this work was to study the corrosion behavior of a Fe-Cr-Ni alloy (310 H stainless steel) in water at a supercritical temperature of 550 °C and a pressure of 250 atm for up to 2160 h. At supercritical temperature, water is a highly aggressive environment, and the corrosion of structural materials used in a supercritical water-cooled nuclear reactor (SCWR) is a critical problem. Selecting proper candidate materials is one key issue for the development of SCWRs. After exposure to deaerated supercritical water, the oxides formed on the 310 H SS surface were characterized using a gravimetric analysis, a metallographic analysis, and electrochemical methods. Gravimetric analysis showed that, due to oxidation, all the tested samples gained weight, and oxidation of 310H stainless steel at 550 °C follows parabolic rate, indicating that it is driven by a diffusion process. The data obtained by microscopic metallography concord with those obtained by gravimetric analysis and show that the oxides layer has a growing tendency in time. At the same time, the results obtained by electrochemical impedance spectroscopy (EIS) measurements indicate the best corrosion resistance of Cr, and (Fe, Mn) Cr2O4 oxides developed on the samples surface after 2160 h of oxidation. Based on the results obtained, a strong correlation between gravimetric analysis, metallographic analysis, and electrochemical methods was found.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3679
Author(s):  
Ismat H. Ali

This study aimed to examine the extract of barks of Tamarix aphylla as a corrosion inhibitor. The methodology briefly includes plant sample collection, extraction of the corrosion inhibitor, gravimetric analysis, plotting potentiodynamic polarization plots, electrochemical impedance spectroscopic measurements, optimization of conditions, and preparation of the inhibitor products. The results show that the values of inhibition efficiency (IE%) increased as the concentrations of the inhibitor increased, with a maximum achievable inhibition efficiency of 85.0%. Potentiodynamic polarization (PP) tests revealed that the extract acts as a dual-type inhibitor. The results obtained from electrochemical impedance spectroscopy (EIS) measurements indicate an increase in polarisation resistance, confirming the inhibitive capacity of the tested inhibitor. The adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm model and involves competitive physio-sorption and chemisorption mechanisms. The EIS technique was utilized to investigate the effect of temperature on corrosion inhibition within the 298–328 K temperature range. Results confirm that the inhibition efficiency (IE%) of the inhibitor decreased slightly as the temperature increased. Lastly, the thermodynamic parameters for the inhibitor were calculated.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4344
Author(s):  
Merve Uca ◽  
Ece Eksin ◽  
Yasemin Erac ◽  
Arzum Erdem

Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.


Sign in / Sign up

Export Citation Format

Share Document