Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods

2021 ◽  
Author(s):  
DoWoo Kwon ◽  
Yuto Jochi ◽  
Yuumi Okaya ◽  
Takahiro Seki ◽  
Kotaro Satoh ◽  
...  
2015 ◽  
Vol 104 (1) ◽  
pp. 17-25 ◽  
Author(s):  
John M. Heffernan ◽  
Derek J. Overstreet ◽  
Sanjay Srinivasan ◽  
Long D. Le ◽  
Brent L. Vernon ◽  
...  

2021 ◽  
Author(s):  
Yusuke Baba ◽  
Guohao Gao ◽  
Mitsuo Hara ◽  
Takahiro Seki ◽  
Kotaro Satoh ◽  
...  

2016 ◽  
Vol 136 ◽  
pp. 300-306 ◽  
Author(s):  
Kaiwen Yang ◽  
Sicheng Wan ◽  
Binbin Chen ◽  
Wenxia Gao ◽  
Jiuxi Chen ◽  
...  

2001 ◽  
Vol 39 (16) ◽  
pp. 2777-2783 ◽  
Author(s):  
Martina Stenzel-Rosenbaum ◽  
Thomas P. Davis ◽  
Vicki Chen ◽  
Anthony G. Fane

2017 ◽  
pp. 1133-1164
Author(s):  
Snežana S. Ilić-Stojanović ◽  
Ljubiša B. Nikolić ◽  
Vesna D. Nikolić ◽  
Slobodan D. Petrović

The latest development in the field of smart hydrogels application as drugs carriers is shown in this chapter. Hydrogels are three-dimensional polymer network consisting of at least one hydrophilic monomer. They are insoluble in water, but in the excess presence of water or physiological fluids, swell to the equilibrium state. The amount of absorbed water depends on the chemical composition and the crosslinking degree of 3D hydrogel network and reaches over 1000% of the xerogel weight. Stimuli-responsive hydrogels exhibit significant change of their properties (swelling, color, transparency, conductivity, shape) due to small changes in the external environment conditions (pH, ionic strength, temperature, light wavelength, magnetic or electric fields, ultrasound, or a combination thereof). This smart hydrogels, with different physical and chemical properties, chemical structure and technology of obtaining, show great potential for application in the pharmaceutical industry. The application of smart hydrogels is very promising and at the beginning of the development and exploitation.


Friction ◽  
2020 ◽  
Author(s):  
Yongpeng Gu ◽  
Xudong Lan ◽  
Gexue Ren ◽  
Ming Zhou

Abstract This paper presents an efficient three-dimensional (3D) structural model for bump-type gas foil bearings (GFBs) developed by considering friction. The foil structures are modeled with a 3D shell finite element model. Using the bump foil mechanical characteristics, the Guyan reduction and component mode synthesis methods are adopted to improve computational efficiency while guaranteeing accurate static responses. A contact model that includes friction and separation behaviors is presented to model the interactions of the bump foil with the top foil and bearing sleeve. The proposed structural model was validated with published analytical and experimental results. The coupled elastohydrodynamics model of GFBs was established by integration of the proposed structural model with data on hydrodynamic films, and it was validated by comparisons with existing experimental results. The performance of a bearing with an angular misalignment was studied numerically, revealing that the reaction torques of the misaligned bearing predicted by GFB models with 2D and 3D foil structure models are quite different. The 3D foil structure model should be used to study GFB misalignment.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Anna Korytkowska-Wałach ◽  
Anna Porwoł ◽  
Mirosław Gibas

AbstractA series of hydrogels were synthesized: homopolymers of new temperature-sensitive methacrylate macromonomers of ether-ester structure, derived from monomethacrylate of tetraethylene glycol via Michael-type addition - oligo(TTEGMMA), and copolymers of oligo(TTEGMMA) with N-isopropylacrylamide (NIPAAm) or 2-hydroxyethyl methacrylate (HEMA). Hydrogels based on oligo(TTEGMMA) demonstrate broad volume phase transition. Combination of oligo(TTEGMMA) with NIPAAm or HEMA yielded hydrogels having narrower phase transition and lower gel transition temperature (LGTT) up to 43 °C at the most, which is in the range of interest for most biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document