Structure of the Thermally Induced Cross-Link in C-Linked Methyl Ester-Functionalized Polydicyclopentadiene (fPDCPD)

2018 ◽  
Vol 51 (5) ◽  
pp. 2038-2047 ◽  
Author(s):  
Tyler J. Cuthbert ◽  
Tong Li ◽  
Alexander W. H. Speed ◽  
Jeremy E. Wulff
1985 ◽  
Vol 40 (7) ◽  
pp. 942-947 ◽  
Author(s):  
Reinhold Tacke ◽  
Matthias Link ◽  
Anke Bentlage-Felten ◽  
Harald Zilch

Abstract The synthesis and the thermal behaviour of the (methylphenylsilyl)methyl carbonates CH3(C6H5)Si(H)CH2OC(O)X (6: X = OCH3; 7: X = Cl; 8: X = N(CH3)2) is described. 8 rearranges in toluene solution at 100 °C quantitatively to give the carbam oyloxysilane C6H5(CH3)2SiOC(O)N(CH3)2 (11), whereas neat 6 and 7 at 135 °C undergo quantitative formation of C6H 5(CH3)2SiOCH3 (12) and C6H5(CH3)2SiCl (13), respectively. The formation of 12 and 13 is explained by a rearrangement reaction (by analogy to the rearrangement of 8), follow ed by a decarboxylation. The thermally induced transformations 6 →12, 7 →13, and 8 →11 were found to be first-order reactions with half-lifes of ~2.6 h (135 °C, neat), ~4.5 h (135 °C, neat), and ~3.7 h (100 °C, in toluene), respectively.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Lyndsey L. Anderson ◽  
Michael Udoh ◽  
Declan Everett-Morgan ◽  
Marika Heblinski ◽  
Iain S. McGregor ◽  
...  

Abstract Objective Cannabigerolic acid (CBGA), a precursor cannabinoid in Cannabis sativa, has recently been found to have anticonvulsant properties in the Scn1a+/- mouse model of Dravet syndrome. Poor brain penetration and chemical instability of CBGA limits its potential as an anticonvulsant therapy. Here, we examined whether CBGA methyl ester, a more stable analogue of CBGA, might have superior pharmacokinetic and anticonvulsant properties. In addition, we examined whether olivetolic acid, the biosynthetic precursor to CBGA with a truncated (des-geranyl) form, might possess minimum structural requirements for anticonvulsant activity. We also examined whether olivetolic acid and CBGA methyl ester retain activity at the epilepsy-relevant drug targets of CBGA: G-protein-coupled receptor 55 (GPR55) and T-type calcium channels. Methods The brain and plasma pharmacokinetic profiles of CBGA methyl ester and olivetolic acid were examined following 10 mg/kg intraperitoneal (i.p.) administration in mice (n = 4). The anticonvulsant potential of each was examined in male and female Scn1a+/- mice (n = 17–19) against hyperthermia-induced seizures (10–100 mg/kg, i.p.). CBGA methyl ester and olivetolic acid were also screened in vitro against T-type calcium channels and GPR55 using intracellular calcium and ERK phosphorylation assays, respectively. Results CBGA methyl ester exhibited relatively limited brain penetration (13%), although somewhat superior to that of 2% for CBGA. No anticonvulsant effects were observed against thermally induced seizures in Scn1a+/- mice. Olivetolic acid also showed poor brain penetration (1%) but had a modest anticonvulsant effect in Scn1a+/- mice increasing the thermally induced seizure temperature threshold by approximately 0.4°C at a dose of 100 mg/kg. Neither CBGA methyl ester nor olivetolic acid displayed pharmacological activity at GPR55 or T-type calcium channels. Conclusions Olivetolic acid displayed modest anticonvulsant activity against hyperthermia-induced seizures in the Scn1a+/- mouse model of Dravet syndrome despite poor brain penetration. The effect was, however, comparable to the known anticonvulsant cannabinoid cannabidiol in this model. Future studies could explore the anticonvulsant mechanism(s) of action of olivetolic acid and examine whether its anticonvulsant effect extends to other seizure types.


Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).


Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


2021 ◽  
Author(s):  
Cyril Rajnák ◽  
Romana Mičová ◽  
Ján Moncoľ ◽  
Ľubor Dlháň ◽  
Christoph Krüger ◽  
...  

A pentadentate Schiff-base ligand 3,5Cl-L2− and NCSe− form a iron(iii) mononuclear complex [Fe(3,5Cl-L)(NCSe)], which shows a thermally induced spin crossover with a broad hysteresis width of 24 K between 123 K (warming) and 99 K (cooling).


1993 ◽  
Vol 3 (5) ◽  
pp. 631-645 ◽  
Author(s):  
J. Käs ◽  
E. Sackmann ◽  
R. Podgornik ◽  
S. Svetina ◽  
B. Žekš

Sign in / Sign up

Export Citation Format

Share Document