Entropically Driven Macrolide Polymerizations for the Synthesis of Aliphatic Polyester Copolymers Using Titanium Isopropoxide

2019 ◽  
Vol 52 (6) ◽  
pp. 2371-2383 ◽  
Author(s):  
Adrian G. Amador ◽  
Annabelle Watts ◽  
Angelika E. Neitzel ◽  
Marc A. Hillmyer
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 773
Author(s):  
Jyun-Yan Ye ◽  
Kuo-Fu Peng ◽  
Yu-Ning Zhang ◽  
Szu-Yuan Huang ◽  
Mong Liang

A series of N-substituted polyether-block-amide (PEBA-X%) copolymers were prepared by melt polycondensation of nylon-6 prepolymer and polytetramethylene ether glycol at an elevated temperature using titanium isopropoxide as a catalyst. The structure, thermal properties, and crystallinity of PEBA-X% were investigated using nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, wide angle X-ray diffraction, and thermogravimetric analysis. In general, the crystallinity, melting point, and thermal degradation temperature of PEBA-X% decreased as the incorporation of N-methyl functionalized groups increased, owing to the disruption caused to the structural regularity of the copolymer. However, in N-acetyl functionalized analogues, the crystallinity first dropped and then increased because of a new γ form arrangement that developed in the microstructure. After the cross-linking reaction of the N-methyl-substituted derivative, which has electron-donating characteristics, with poly(4,4′-methylenebis(phenyl isocyanate), the decomposition temperature of the resulting polymer significantly increased, whereas no such improvements could be observed in the case of the electro-withdrawing N-acetyl-substituted derivative, because of the incompleteness of its cross-linking reaction.


2021 ◽  
Vol 122 ◽  
pp. 111928
Author(s):  
Eduardo H. Backes ◽  
Emanuel M. Fernandes ◽  
Gabriela S. Diogo ◽  
Catarina F. Marques ◽  
Tiago H. Silva ◽  
...  

Author(s):  
Nitesh Parmar ◽  
Jitendra Kumar Srivastava

Abstract This study is an attempt to the removal of Ciprofloxacin (CIP) antibiotic from simulated wastewater using a photocatalytic process. The photocatalytic process was carried out in a photocatalytic reactor in the presence of TiO2 nanoparticles. TiO2 nanoparticles were successfully prepared in a laboratory scale using sol-gel method with titanium-isopropoxide (TTIP) as titanium precursor. Prepared material was found very effective to the removal of CIP antibiotic. The maximum removal efficiency of 87.95% of ciprofloxacin from aqueous solution was achieved at the pH 5, catalyst doze of 40 mg L−1 with initial concentration of ciprofloxacin 5 mg L−1, and the reaction time of 100 min additionally; material characterization of TiO2 was presented in detail in terms of XRD, SEM, UV, and FTIR. It has been found that at the optimum condition the total operating cost indicated for the removal of ciprofloxacin from aqueous solution is 786.56 (INR/kg of CIP removal). This technique demonstrated that photocatalytic reaction in presence of TiO2 nanoparticles is well applicable to treat pharmaceutical wastewater.


Sign in / Sign up

Export Citation Format

Share Document