scholarly journals Modulation of Charge Transport at Grain Boundaries in SrTiO3: Toward a High Thermoelectric Power Factor at Room Temperature

Author(s):  
Jianyun Cao ◽  
Dursun Ekren ◽  
Yudong Peng ◽  
Feridoon Azough ◽  
Ian A. Kinloch ◽  
...  
2009 ◽  
Vol 1166 ◽  
Author(s):  
Julio E. Rodríguez ◽  
J. A. Niño

AbstractThermoelectric properties of polycrystalline La0.75Sr0.25Co1-xMnxO3-δ(0<x<0.08) (LSCoO-Mn) compounds have been studied. The samples were grown by solid-state reaction method; their transport properties were studied in the temperature range between 100 and 290K, as a function of temperature and the manganese content. The Seebeck coefficient (S) is positive over the measured temperature range and its magnitude increases with the manganese content up to values close to 160 μV/K. The electrical resistivity (ρ) goes from metallic to semiconducting behavior as the Mn level increases, at room temperature, ρ(T) exhibit values less than 4mΩ-cm. From S(T), ρ(T) and κ(T) data, the thermoelectric power factor and the figure of merit were determined. These performance parameters reach maximum values around 18 μW/K2-cm and 0.2, respectively. The observed behavior in the transport properties become these compounds potential thermoelectric materials, which could be used in thermoelectric applications.


RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20336-20344 ◽  
Author(s):  
Suchitra Yadav ◽  
Brajesh S. Yadav ◽  
Sujeet Chaudhary ◽  
Dinesh K. Pandya

Deposition potential controlled evolution of (420) textured CoSb3 phase and micro structure correlated to enhancement in near room temperature thermoelectric power-factor.


2011 ◽  
Vol 25 (22) ◽  
pp. 1829-1838 ◽  
Author(s):  
Q. R. HOU ◽  
B. F. GU ◽  
Y. B. CHEN ◽  
Y. J. HE

Phonon-drag effect usually occurs in single crystals at very low temperatures (10–200 K). Strong phonon-drag effect is observed in ultra-thin β- FeSi 2 films at around room temperature. The Seebeck coefficient of a 23 nm-thick β- FeSi 2 film can reach -1.375 mV/K at 343 K. However, the thermoelectric power factor of the film is still small, only 0.42×10-3 W/m-K2, due to its large electrical resistivity. When a 27 nm-thick MnSi 1.7 film with low electrical resistivity is grown on it, the thermoelectric power factor of the MnSi 1.7 film can reach 1.5×10-3 W/m-K2 at around room temperature. This value is larger than that of bulk MnSi 1.7 material in the same temperature range.


2009 ◽  
Vol 38 (7) ◽  
pp. 1221-1223 ◽  
Author(s):  
Eric J. Skoug ◽  
Chen Zhou ◽  
Yanzhong Pei ◽  
Donald T. Morelli

2005 ◽  
Vol 886 ◽  
Author(s):  
Julio E. Rodriguez

ABSTRACTMeasurements of Seebeck coefficient, S(T) and electrical resistivity, ρ(T) on polycrystalline La2−xSrxCuO4+d(LSCO) (0<x≤0.2) samples are reported. The Seebeck coefficient is positive in whole measured temperature range (77K and 300K) and it decreases with Sr content. At room temperature S(T) changes from 400 μ/K for the samples with the lowest levels of Sr to 30 μV/K for the samples with the highest Sr levels. The behavior of S(T) fits to Heikes model, which describes the behavior of Seebeck coefficient in systems where the correlated hopping is present. With the Sr content, the electrical resistivity changes its behavior from semiconducting to metallic and it took values from 2.4 to 10−3Ωcm. From S(T) and rho(T) measurements the thermoelectric power factor, PF was obtained. The maximum values for PF were about 5 μW/K2cm in the samples where x= 0.03, which are comparable to the typical values for conventional thermoelectric semiconductors. The structural and morphological properties of the samples were studied by x-ray diffraction analysis and Scanning Electron Microscopy (SEM) respectively. The behavior of transport properties opens de possibility of considering this family of perovskite-compounds as a thermoelectric material which works below room temperature.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2932 ◽  
Author(s):  
Dabin Park ◽  
Minsu Kim ◽  
Jooheon Kim

Flexible Ag2Se NW/PEDOT:PSS thermoelectric composite films with different Ag2Se contents (10, 20, 30, 50, 70, and 80 wt.%) are fabricated. The Ag2Se nanowires are first fabricated with solution mixing. After that, Ag2Se NW/PEDOT:PSS composite film was fabricated using a simple drop-casting method. To evaluate the potential applications of the Ag2Se NW/PEDOT:PSS composite, their thermoelectric properties are analyzed according to their Ag2Se contents, and strategies for maximizing the thermoelectric power factor are discussed. The maximum room-temperature power factor of composite film (178.59 μW/m·K2) is obtained with 80 wt.% Ag2Se nanowires. In addition, the composite film shows outstanding durability after 1000 repeat bending cycles. This work provides an important strategy for the fabrication of high-performance flexible thermoelectric composite films, which can be extended to other inorganic/organic composites and will certainly promote their development and thermoelectric applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Airan Li ◽  
Chaoliang Hu ◽  
Bin He ◽  
Mengyu Yao ◽  
Chenguang Fu ◽  
...  

AbstractValley anisotropy is a favorable electronic structure feature that could be utilized for good thermoelectric performance. Here, taking advantage of the single anisotropic Fermi pocket in p-type Mg3Sb2, a feasible strategy utilizing the valley anisotropy to enhance the thermoelectric power factor is demonstrated by synergistic studies on both single crystals and textured polycrystalline samples. Compared to the heavy-band direction, a higher carrier mobility by a factor of 3 is observed along the light-band direction, while the Seebeck coefficient remains similar. Together with lower lattice thermal conductivity, an increased room-temperature zT by a factor of 3.6 is found. Moreover, the first-principles calculations of 66 isostructural Zintl phase compounds are conducted and 9 of them are screened out displaying a pz-orbital-dominated valence band, similar to Mg3Sb2. In this work, we experimentally demonstrate that valley anisotropy is an effective strategy for the enhancement of thermoelectric performance in materials with anisotropic Fermi pockets.


2021 ◽  
pp. 102493
Author(s):  
M.A. Gharavi ◽  
D. Gambino ◽  
A. le Febvrier ◽  
F. Eriksson ◽  
R. Armiento ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


Sign in / Sign up

Export Citation Format

Share Document