Nitrogen Plasma-Assisted Functionalization of Silicon/Graphite Anodes to Enable Fast Kinetics

Author(s):  
Su Jeong Yeom ◽  
Tae-Ung Wi ◽  
Sangho Ko ◽  
Changhyun Park ◽  
Khayala Bayramova ◽  
...  
2019 ◽  
Author(s):  
Ji Liu ◽  
Michael Nolan

<div>In the atomic layer deposition (ALD) of Cobalt (Co) and Ruthenium (Ru) metal using nitrogen plasma, the structure and composition of the post N-plasma NHx terminated (x = 1 or 2) metal surfaces are not well known but are important in the subsequent metal containing pulse. In this paper, we use the low-index (001) and (100) surfaces of Co and Ru as models of the metal polycrystalline thin films. The (001) surface with a hexagonal surface structure is the most stable surface and the (100) surface with a zigzag structure is the least stable surface but has high reactivity. We investigate the stability of NH and NH2 terminations on these surfaces to determine the saturation coverage of NHx on Co and Ru. NH is most stable in the hollow hcp site on (001) surface and the bridge site on the (100) surface, while NH2 prefers the bridge site on both (001) and (100) surfaces. The differential energy is calculated to find the saturation coverage of NH and NH2. We also present results on mixed NH/NH2-terminations. The results are analyzed by thermodynamics using Gibbs free energies (ΔG) to reveal temperature effects on the stability of NH and NH2 terminations. Ultra-high vacuum (UHV) and standard ALD</div><div>operating conditions are considered. Under typical ALD operating conditions we find that the most stable NHx terminated metal surfaces are 1 ML NH on Ru (001) surface (350K-550K), 5/9 ML NH on Co (001) surface (400K-650K) and a mixture of NH and NH2 on both Ru (100) and Co (100) surfaces.</div>


2020 ◽  
Vol 58 (5) ◽  
pp. 671-680
Author(s):  
O. V. Korshunov ◽  
D. I. Kavyrshin ◽  
V. F. Chinnov

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3852
Author(s):  
Bongjun Gu ◽  
Dongwook Ko ◽  
Sungjin Jo ◽  
Dong Choon Hyun ◽  
Hyeon-Ju Oh ◽  
...  

Wrinkles attract significant attention due to their ability to enhance the mechanical and optical characteristics of various optoelectronic devices. We report the effect of the plasma gas type, power, flow rate, and treatment time on the wrinkle features. When an optical adhesive was treated using a low-pressure plasma of oxygen, argon, and nitrogen, the oxygen and argon plasma generated wrinkles with the lowest and highest wavelengths, respectively. The increase in the power of the nitrogen and oxygen plasma increased the wavelengths and heights of the wrinkles; however, the increase in the power of the argon plasma increased the wavelengths and decreased the heights of the wrinkles. Argon molecules are heavier and smaller than nitrogen and oxygen molecules that have similar weights and sizes; moreover, the argon plasma comprises positive ions while the oxygen and nitrogen plasma comprise negative ions. This resulted in differences in the wrinkle features. It was concluded that a combination of different plasma gases could achieve exclusive control over either the wavelength or the height and allow a thorough analysis of the correlation between the wrinkle features and the characteristics of the electronic devices.


1999 ◽  
Vol 23 (1) ◽  
pp. 38-39
Author(s):  
N. Bellakhal ◽  
K. Draou ◽  
J. L. Brisset

Exposure of a 304 stainless steel sample to an inductively coupled low pressure radio frequency (RF) nitrogen plasma leads to the formation of a nitriding layer. The protective properties of this layer are investigated by electrochemical methods. The corrosion potential of the steel in an aqueous solution depends on the working parameters of the plasma such as the time exposure and the distance between the steel sample and the high voltage (HV) coil of the treatment reactor.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1261-1270
Author(s):  
Qianqian Peng ◽  
Chuan Guo ◽  
Shuo Qi ◽  
Weiwei Sun ◽  
Li-Ping Lv ◽  
...  

Ultra-small Fe3O4 nanodots encapsulated in layered carbon nanosheet nanocomposites were synthesized, showing fast reaction kinetics, high conductivity, and robust stability.


Author(s):  
Xu Han ◽  
Zeyun Zhang ◽  
Xuefei Xu

To suppress the shuttle effect of lithium polysulfides and promote fast kinetics of charge−discharge process in Li−S batteries, it is essential to search promising catalysts with sufficient stability and high...


Sign in / Sign up

Export Citation Format

Share Document