A Novel Polyaniline-Coated Bagasse Fiber Composite with Core–Shell Heterostructure Provides Effective Electromagnetic Shielding Performance

2016 ◽  
Vol 9 (1) ◽  
pp. 809-818 ◽  
Author(s):  
Yang Zhang ◽  
Munan Qiu ◽  
Ying Yu ◽  
Bianying Wen ◽  
Lele Cheng
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Huiya Wang ◽  
Zhifan Zhang ◽  
Chengjun Dong ◽  
Gang Chen ◽  
Yude Wang ◽  
...  

2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940020 ◽  
Author(s):  
Ming Gong ◽  
Shou-Guang Sun ◽  
Lin Sun ◽  
Ai-Qin Tian ◽  
Qiang Li

Computer Simulation Technology EM and Computer Simulation Technology Microwave Studio electromagnetic simulation software were used to simulate the carbon fiber composite materials with a new type of wide frequency electromagnetic shielding coating. DC magnetic field, low-frequency electromagnetic fields, and mid-high frequency electromagnetic shielding effectiveness analysis model were established in order to study the influence of permeability, conductivity, coating thickness and other parameters in the typical frequency range research on the shielding effectiveness. The results show that the composite coating material with reasonable design can effectively enhance the electromagnetic shielding performance of carbon fiber composite materials in the DC [Formula: see text]18 GHz frequency range.


Vacuum ◽  
2019 ◽  
Vol 170 ◽  
pp. 108990 ◽  
Author(s):  
Kun Zhang ◽  
Xue Gu ◽  
Qian Dai ◽  
Bingnan Yuan ◽  
Yue Yan ◽  
...  

BioResources ◽  
2016 ◽  
Vol 11 (2) ◽  
Author(s):  
Yi Chen ◽  
Chuwang Su ◽  
Quanping Yuan ◽  
Manjun Zhan ◽  
Bing Yang ◽  
...  

2017 ◽  
Vol 757 ◽  
pp. 40-45 ◽  
Author(s):  
Sawitree Suckley ◽  
Piyanuch Deenuch ◽  
Natchaya Disjareon ◽  
Suttinun Phongtamrug

In this research work, natural fiber reinforced composites of bagasse fiber-epoxy resin were prepared. The chemical treatments using sodium hydroxide (NaOH) at 1,3,5,7 wt% were carried out to modify the fiber properties. Thermogravimetric analysis (TGA) was used to study the thermal stability of treated and untreated fibers. The effects of fiber treatment and fiber contents on mechanical properties of bagasse-epoxy composite were investigated. The characteristics of bagasse-epoxy resin composites exposed to high temperature as well as water absorption behavior were determined. The results from the TGA revealed that alkalization improved thermal stability of bagasse fiber. Treated bagasse fibers also had lower moisture content as compared to untreated fiber. The experimental results showed that the flexural properties of composites prepared from treated bagasse fibers were enhanced as compared to the untreated fiber composite. Thermal degradation study demonstrated that treated bagasse fiber composites experienced lower weight loss than untreated fiber composites. From water absorption study, it was observed that the treated bagasse fiber composites had lower water absorption values than those of untreated fiber based composites.


2016 ◽  
Vol 851 ◽  
pp. 31-36 ◽  
Author(s):  
Tarinee Nampitch ◽  
Chanon Wiphanurat ◽  
Thiti Kaisone ◽  
Pran Hanthanon

This research attempted to prepare composite foams of PLA/bagasse fiber with various fiber content at 0, 5, 10, 15, 20 wt% and a fixed foaming agent with extra added 2 wt% for all composites. The mechanical properties and morphology of neat PLA and PLA/bagasse fiber composite foams were investigated. The tensile strength showed that the highest fiber content of 7 wt% was 45.27 MPa, while neat PLA was 25.63 MPa. Impact strength showed a decreasing trend with increasing fiber content. SEM analysis was important to reveal the phase of fiber and matrix for support to discuss the results trend of PLA and composite properties.


Author(s):  
Sherif Mehanny ◽  
Mahmoud Farag ◽  
R. M. Rashad ◽  
Hamdy Elsayed

Environmentally-friendly, biodegradable, “green” composites were fabricated from starch-based matrix and bagasse (sugar cane waste) fibers. Native corn starch was mixed with glycerin and water, emulsified then added to the bagasse fibers previously prepared and treated by NaOH. The composite was preheated, then pressed for 30 minutes at 5 MPa and 170°C. SEM showed good adhesion between fibers and matrix up to 60wt% fibers. Density measurements showed low porosity for all composite samples up to 60wt% fibers. Both the tensile and flexural strengths increased as the fiber weight fraction increased from 0% to 60%. Water Uptake and thermal degradability tests showed higher stability for composite with increasing fiber content. The results show that the 60wt% bagasse fiber starch-based composite is an eco-friendly and inexpensive candidate for many applications.


2018 ◽  
Vol 53 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Francis L King ◽  
A Arul Jeya Kumar ◽  
Srinivasan Vijayaragahavan

This paper focuses on the mechanical behavior of Polylatic acid reinforced Basalt and Bagasse fibers. The most important aspect in formulating this hybrid composite with better mechanical properties is the optimization of interfacial bonding between the reinforcing bagasse fiber and basalt fiber and polymer matrix. The composite of different weight proportion of the materials is compounded using twin screw extruder. The specimens were prepared by injection molding and subjected to various mechanical testing under tensile, flexural, and impact loads. It was found that 84 wt% of polylactic acid, 12 wt% of Basalt fiber and 4 wt% of Bagasse fiber composite exhibits better mechanical properties compared to other composites taken for study in this research. The better tensile, flexural, and impact strength of 52.8 MPa, 82.2 MPa, and 3.39 KJ/m2 were observed. The results show that the fiber content in weight percentage is playing a major than the fiber length on the improvement of tensile, flexural, and impact properties. The mechanical behavior obtained through experiments witnessed that Bagasse/Basalt fiber reinforcement in polylactic acid composites can be used as medium-load applications because of its low cost and ease of decomposability. The scanning electron microscope photography of the tested specimens shows better interfacial bonding between matrix and fibers. Also, the water absorption test indicates increase in fiber content increases the water absorption rate, reveals good degradation property of the composite. Additionally, the use of Bagasse fiber promotes the degradation of the material after its life time.


2020 ◽  
Vol 305 ◽  
pp. 8-17
Author(s):  
Felix Wong Wei Zie ◽  
Sujan Debnath ◽  
Mahmood Anwar ◽  
Abdul Hamid Abdullah

Surface treatment is one of the method used to enhance the mechanical performance of natural fiber composite by improving the compatibility of fiber and matrix. Nevertheless, no proof can be shown on which surface treatment is the absolute solution in improving the mechanical properties of natural fiber composite. Different surface treatments might have needed for different kinds of natural fiber composites. In this research work, water, alkaline, permanganate, bleaching and acetylation treatment on bagasse fiber are evaluated and the effect of soaking temperature as well as the effect of fiber loading are investigated. The mechanical performance of bagasse fiber-epoxy composite was studied by carrying out three-point bending test and optical microscopy test. Among 0w/w% and 5w/w% fiber loading, composite with 1w/w% and 2w/w% fiber loading possessed the highest flexural strength and modulus respectively. However, poor wettability between fiber and matrix was observed at higher fiber loading. Water, bleaching, permanganate and acetylation treatment have minor positive effect on the mechanical performance of the composite, yet a great increment in flexural properties of alkali treated fiber composite was noticed such that 21.48% and 23.95% of improvement was made on flexural strength and flexural modulus respectively. Optical microscopy test indicated that alkali treatment is responsible for roughening the fiber surface, and improving the fiber wettability and dispersion. Depend on the surface treatment, effect of soaking temperature may vary. In some treatments, hotter soaking temperature led to faster rate of reaction, which resulted in greater surface roughening and greater cleansing effect. Despite of that, over reaction can be happened in some cases, which will result in lower flexural properties due to over damaged fiber. Hence, it was concluded that the alkaline treatment at room temperature could be the most effective surface treatment to enhance the mechanical performance of bagasse fiber-epoxy composite.


Sign in / Sign up

Export Citation Format

Share Document