Mechanical and Morphological Properties of Poly(Lactic Acid)/Bagasse Fiber Composite Foams

2016 ◽  
Vol 851 ◽  
pp. 31-36 ◽  
Author(s):  
Tarinee Nampitch ◽  
Chanon Wiphanurat ◽  
Thiti Kaisone ◽  
Pran Hanthanon

This research attempted to prepare composite foams of PLA/bagasse fiber with various fiber content at 0, 5, 10, 15, 20 wt% and a fixed foaming agent with extra added 2 wt% for all composites. The mechanical properties and morphology of neat PLA and PLA/bagasse fiber composite foams were investigated. The tensile strength showed that the highest fiber content of 7 wt% was 45.27 MPa, while neat PLA was 25.63 MPa. Impact strength showed a decreasing trend with increasing fiber content. SEM analysis was important to reveal the phase of fiber and matrix for support to discuss the results trend of PLA and composite properties.

2019 ◽  
Vol 33 (11) ◽  
pp. 1518-1532 ◽  
Author(s):  
Man Chee Lee ◽  
Seong Chun Koay ◽  
Ming Yeng Chan ◽  
Hui Leng Choo ◽  
Ming Meng Pang ◽  
...  

Biocomposites are sustainable composite materials that, owing to their many benefits, have attracted interest of industry. In the present research, the durian husk fiber (DHF) was used as natural fiber in poly(lactic acid) (PLA) biocomposites. This study focused on the effects of fiber and processing aid content on the processing torque, tensile, thermal, and morphological properties of PLA/DHF biocomposites. The biocomposites with high fiber content have strength and modulus that are suitable for nonstructural application. The processing aid used was Ultra-Plast XP519. The addition of Ultra-Plast XP519 significantly improved the processing by lowering the torque, but it brought negative effect on mechanical properties.


2018 ◽  
Vol 53 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Francis L King ◽  
A Arul Jeya Kumar ◽  
Srinivasan Vijayaragahavan

This paper focuses on the mechanical behavior of Polylatic acid reinforced Basalt and Bagasse fibers. The most important aspect in formulating this hybrid composite with better mechanical properties is the optimization of interfacial bonding between the reinforcing bagasse fiber and basalt fiber and polymer matrix. The composite of different weight proportion of the materials is compounded using twin screw extruder. The specimens were prepared by injection molding and subjected to various mechanical testing under tensile, flexural, and impact loads. It was found that 84 wt% of polylactic acid, 12 wt% of Basalt fiber and 4 wt% of Bagasse fiber composite exhibits better mechanical properties compared to other composites taken for study in this research. The better tensile, flexural, and impact strength of 52.8 MPa, 82.2 MPa, and 3.39 KJ/m2 were observed. The results show that the fiber content in weight percentage is playing a major than the fiber length on the improvement of tensile, flexural, and impact properties. The mechanical behavior obtained through experiments witnessed that Bagasse/Basalt fiber reinforcement in polylactic acid composites can be used as medium-load applications because of its low cost and ease of decomposability. The scanning electron microscope photography of the tested specimens shows better interfacial bonding between matrix and fibers. Also, the water absorption test indicates increase in fiber content increases the water absorption rate, reveals good degradation property of the composite. Additionally, the use of Bagasse fiber promotes the degradation of the material after its life time.


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


2016 ◽  
Vol 835 ◽  
pp. 42-49
Author(s):  
Tarinee Nampitch ◽  
Rathanawan Magaraphan

Skim natural rubber (NR)–clay nanocomposites were prepared by a coagulation method using the organoclays Cloisite 15A, Cloisite 20A and Cloisite 30B. This work investigated the use of bagasse fiber developed from locally sourced and renewable material as an alternative and/or secondary filler in skim NR–clay nanocomposites. Bagasse fiber loading in the nanocomposites was 0, 5, 10 and 20 phr; the effects of fiber content on cure characteristics and mechanical properties were then determined. The results suggest that the Mooney viscosity tended to increase with increasing fiber content, whereas the cure time at 90% and fatigue testing score decreased as fiber loading increased.


2019 ◽  
Vol 20 (3) ◽  
pp. 504 ◽  
Author(s):  
Maria-Beatrice Coltelli ◽  
Patrizia Cinelli ◽  
Vito Gigante ◽  
Laura Aliotta ◽  
Pierfrancesco Morganti ◽  
...  

Chitin-nanofibrils are obtained in water suspension at low concentration, as nanoparticles normally are, to avoid their aggregation. The addition of the fibrils in molten PLA during extrusion is thus difficult and disadvantageous. In the present paper, the use of poly(ethylene glycol) (PEG) is proposed to prepare a solid pre-composite by water evaporation. The pre-composite is then added to PLA in the extruder to obtain transparent nanocomposites. The amount of PEG and chitin nanofibrils was varied in the nanocomposites to compare the reinforcement due to nanofibrils and plasticization due to the presence of PEG, as well as for extrapolating, where possible, the properties of reinforcement due to chitin nanofibrils exclusively. Thermal and morphological properties of nanocomposites were also investigated. This study concluded that chitin nanofibrils, added as reinforcing filler up to 12% by weight, do not alter the properties of the PLA based material; hence, this additive can be used in bioplastic items mainly exploiting its intrinsic anti-microbial and skin regenerating properties.


Author(s):  
He Tian ◽  
Y. X. Zhang

In this paper, a new green fiber-reinforced cementitious composite containing high volume fly ash and hybrid steel and bagasse fibers is developed. Eco-friendly bagasse fibers from industrial waste and steel fibers are used to improve the mechanical behavior of the new composite, and high-volume fly ash is used to decrease the usage of cement in order to be more environmentally friendly. The influence of the fiber content and fly ash/cement ratio on the mechanical properties of the composite is investigated through the study of the mechanical properties of the new composite, such as compressive strength, modulus of elasticity, and modulus of rupture. It is found that compressive strength, Young's modulus of the composite, decreases with the increase of the fly ash/cement ratio and bagasse fiber content. However, the modulus of rupture of the composite increases firstly with bagasse fiber content, and decreases when bagasse fiber content reaches 3% by volume.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3189 ◽  
Author(s):  
Annandarajah ◽  
Langhorst ◽  
Kiziltas ◽  
Grewell ◽  
Mielewski ◽  
...  

: In the recent years, automakers have been striving to improve the carbon footprint of their vehicles. Sustainable composites, consisting of natural fibers, and/or recycled polymers have been developed as a way to increase the “green content” and reduce the weight of a vehicle. In addition, recent studies have found that the introduction of synthetic fibers to a traditional fiber composite such as glass filled plastics, producing a composite with multiple fillers (hybrid fibers), can result in superior mechanical properties. The objective of this work was to investigate the effect of hybrid fibers on characterization and material properties of polyamide-6 (PA6)/polypropylene (PP) blends. Cellulose and glass fibers were used as fillers and the mechanical, water absorption, and morphological properties of composites were evaluated. The addition of hybrid fibers increased the stiffness (tensile and flexural modulus) of the composites. Glass fibers reduced composite water absorption while the addition of cellulose fibers resulted in higher composite stiffness. The mechanical properties of glass and cellulose filled PA6/PP composites were optimized at loading levels of 15 wt% glass and 10 wt% cellulose, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. Soriano-Corral ◽  
L. A. Calva-Nava ◽  
J. F. Hernández-Gámez ◽  
E. Hernández-Hernández ◽  
P. González-Morones ◽  
...  

Agave fibers (AF) were incorporated either pristine (AFp) or surface treated by ethylene plasma (AFm) in low-density polyethylene (LDPE)/ethylene vinyl acetate (EVA) blends at a ratio of 1 : 1 and foamed by chemical means. The role of the AF content (3, 6, 9, 12, and 15 wt.%) and its surface modification on the cellular morphology and mechanical properties of LDPE/EVA/AF foams under compression is investigated herein. Fourier transform-infrared spectroscopy, contact angle, and water suspension of AF suggest that plasma treatment using ethylene successfully modifies the surface nature of AF from hydrophilic to hydrophobic. AF and the surface treatment have an important role on the morphological properties of the foams. Composite foams reinforced with 12 wt.% AFm exhibited the highest mechanical properties improvements. At this fiber content, the composite foams enhanced 30% of the compressive modulus and 23% of the energy absorption under compression with respect to the neat polymer blend foam, as a result to the formation of more uniform cells with smaller size and the enhancement of compatibility and spatial distribution of the AFm in the polymer composite foams due to thin clusters of polyethylene-like polymer deposited on the AF surface.


2018 ◽  
Vol 37 (2) ◽  
pp. 55-68 ◽  
Author(s):  
Yao Dou ◽  
Denis Rodrigue

In this work, a simple method is presented to produce ground tire rubber (GTR) -linear low density polyethylene (LLDPE) compounds and foams via rotational molding. In particular, different GTR concentrations (0 to 50% wt.) were dry-blended with different chemical blowing agent (CBA) content (0 to 1% wt.). From the samples produced, a complete set of characterization was performed in terms of mechanical properties (tensile, flexural and impact), density and morphological properties. The results show that increasing GTR content or CBA content not only decreased both tensile and flexural moduli, but decreased ultimate strength and strain at break. As expected, increasing blowing agent content decreased density. Besides, with respect to impact strength, the value of all samples decreased with the addition of GTR or CBA except for 0.2% wt. CBA of GTR-LLDPE composite foams, which nearly remain at the same level.


Sign in / Sign up

Export Citation Format

Share Document