Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles

2018 ◽  
Vol 10 (23) ◽  
pp. 19436-19448 ◽  
Author(s):  
Yen-Jang Huang ◽  
Kun-Che Hung ◽  
Huey-Shan Hung ◽  
Shan-hui Hsu
Author(s):  
Yining Liu ◽  
Tatiana Segura

Endogenous regeneration aims to rebuild and reinstate tissue function through enlisting natural self-repairing processes. Promoting endogenous regeneration by reducing tissue-damaging inflammatory responses while reinforcing self-resolving inflammatory processes is gaining popularity. In this approach, the immune system is recruited as the principal player to deposit a pro-reparative matrix and secrete pro-regenerative cytokines and growth factors. The natural wound healing cascade involves many immune system players (neutrophils, macrophages, T cells, B cells, etc.) that are likely to play important and indispensable roles in endogenous regeneration. These cells support both the innate and adaptive arms of the immune system and collectively orchestrate host responses to tissue damage. As the early responders during the innate immune response, macrophages have been studied for decades in the context of inflammatory and foreign body responses and were often considered a cell type to be avoided. The view on macrophages has evolved and it is now understood that macrophages should be directly engaged, and their phenotype modulated, to guide the timely transition of the immune response and reparative environment. One way to achieve this is to design immunomodulating biomaterials that can be placed where endogenous regeneration is desired and actively direct macrophage polarization. Upon encountering these biomaterials, macrophages are trained to perform more pro-regenerative roles and generate the appropriate environment for later stages of regeneration since they bridge the innate immune response and the adaptive immune response. This new design paradigm necessitates the understanding of how material design elicits differential macrophage phenotype activation. This review is focused on the macrophage-material interaction and how to engineer biomaterials to steer macrophage phenotypes for better tissue regeneration.


2021 ◽  
Vol 96 ◽  
pp. 107791
Author(s):  
Xinsen Chen ◽  
Yancun Liu ◽  
Yulei Gao ◽  
Songtao Shou ◽  
Yanfen Chai

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Rajarajan A Thandavarayan ◽  
Darukeshwara Joladarashi ◽  
Sahana S Babu ◽  
Garikipati V Srikanth ◽  
Alexander R Mackie ◽  
...  

Clinical and experimental studies provide evidence that metabolic and inflammatory pathways are functionally interconnected to cardiovascular diseases. Dynamic changes in macrophage activation [classical M1 activation (promote inflammation) or alternative M2 activation (promote wound healing)], in response to various stress signals, modulate cardiac physiopathology in diabetes. Sirtuin 6 (SIRT6), a NAD-dependent nuclear deacetylase plays an important role in genomic stability, cellular metabolism, stress response and aging. However, the mechanism by which SIRT6 activity affects macrophage phenotype and cardiac function in diabetes is still unexplored. Mouse bone marrow-derived macrophages (BMM) exposed to high glucose (HG, 25mM D-glucose) showed reduced expression of SIRT6 as compared to low glucose (LG, 5mM D-glucose)- and osmotic control (OC, 5mM D-glucose+20mM D-mannitol)-treated cells, associated with increased expression of proinflammatory cytokine and transcription factors (NFkb, c-JUN, FOXO, SP1 and STAT1). In addition, SIRT6 level was reduced in peritoneal macrophages of both diabetic models (streptozotocin-induced and db/db mice) as compared to non-diabetic mice. SIRT6 knockdown in RAW 264.7 cells exaggerated inflammatory response when exposed to HG. In contrast, IL-4-induced increase in mRNA expression of macrophage M2 phenotype markers like Arg1, Chi4l4, Retnla and IRS-2, but not IRS-1 expression was repressed suggesting that alternative macrophage (M2) phenotype was defective in SIRT6 deficient BM-macrophages under HG condition. SIRT6 protein expression was low in myocardial infarction-induced (MI) and diabetes-affected hearts. Interestingly, mice receiving intramyocardial injection of SIRT6-deficient macrophages showed further deterioration in left ventricular function, post-MI. Taken together, these data highlight a role for SIRT6 in regulating the balance of M1/M2 polarization, therefore, modulate macrophage mediated cardiac repair and regeneration in numerous inflammatory disease states including diabetes


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1753
Author(s):  
Fang He ◽  
Felix Umrath ◽  
Christiane von Ohle ◽  
Siegmar Reinert ◽  
Dorothea Alexander

Jaw periosteum-derived mesenchymal stem cells (JPCs) represent a promising cell source for bone tissue engineering in oral and maxillofacial surgery due to their high osteogenic potential and good accessibility. Our previous work demonstrated that JPCs are able to regulate THP-1-derived macrophage polarization in a direct coculture model. In the present study, we used an innovative horizontal coculture system in order to understand the underlying paracrine effects of JPCs on macrophage phenotype polarization. Therefore, JPCs and THP-1-derived M1/M2 macrophages were cocultured in parallel chambers under the same conditions. After five days of horizontal coculture, flow cytometric, gene and protein expression analyses revealed inhibitory effects on costimulatory and proinflammatory molecules/factors as well as activating effects on anti-inflammatory factors in M1 macrophages, originating from multiple cytokines/chemokines released by untreated and osteogenically induced JPCs. A flow cytometric assessment of DNA synthesis reflected significantly decreased numbers of proliferating M1/M2 cells when cocultured with JPCs. In this study, we demonstrated that untreated and osteogenically induced JPCs are able to switch macrophage polarization from a classical M1 to an alternative M2-specific phenotype by paracrine secretion, and by inhibition of THP-1-derived M1/M2 macrophage proliferation.


2020 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Rakel Arrazuria ◽  
Iraia Ladero ◽  
Elena Molina ◽  
Miguel Fuertes ◽  
Ramón Juste ◽  
...  

Paratuberculosis (PTB) is an enteric granulomatous disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) that mainly affects ruminants. Current vaccines have shown to be cost–effective control reagents, although they are restricted due to cross-interference with bovine tuberculosis (bTB). Therefore, novel vaccination strategies are needed and this study is focused on evaluating alternative vaccination routes and their effect on the local immune response. The MAP oral challenge rabbit model was used to evaluate and compare an experimental inactivated MAP vaccine through oral (VOR) and intradermal (VID) routes. The VID group presented the highest proportion of animals with no visible lesions and the lowest proportion of animals with MAP positive tissues. Immunohistochemistry analysis revealed that the VID group presented a dominantly M1 polarized response indicating an ability to control MAP infection. In general, all vaccinated groups showed lower calprotectin levels compared to the non-vaccinated challenged group suggesting less active granulomatous lesions. The VID group showed some degree of skin test reactivity, whereas the same vaccine through oral administration was completely negative. These data show that PTB vaccination has an effect on macrophage polarization and that the route influences infection outcome and can also have an impact on bTB diagnosis. Future evaluation of new immunological products against mycobacterial diseases should consider assaying different vaccination routes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wei He ◽  
Ting Yuan ◽  
Kathrin Maedler

AbstractObesity is associated with inflammatory macrophages in insulin responsive tissues and the resulting inflammatory response is a major contributor to insulin resistance. In insulin-producing pancreatic islets, the intra-islet accumulation of macrophages is observed in patients of type 2 diabetes (T2D), but such has not been investigated in obese individuals. Here, we show that pro-inflammatory cytokines (IL-1β, IL-6, and TNF), anti-inflammatory cytokines (IL-10 and TGF-β) and macrophage polarization markers (CD11c, CD163, and NOS2) were expressed in isolated human islets from non-diabetic donors. Clodronate-mediated depletion of resident macrophages revealed expression of IL1B and IL10 mostly from macrophages, while IL6, TNF, and TGFB1 came largely from a non-macrophage origin in human islets. NOS2 expression came exclusively from non-macrophage cells in non-obese individuals, while it originated also from macrophages in obese donors. Macrophage marker expression of CD68, CD163, and ITGAX was unchanged in islets of non-obese control and obese cohorts. In contrast, IL1B and NOS2 were significantly increased in islets from obese, compared to non-obese individuals, implying a more inflammatory macrophage phenotype in islets in obesity. Our study shows elevated macrophage-associated inflammation in human islets in obesity, which could be an initiating factor to the pro-inflammatory intra-islet milieu and contribute to the higher susceptibility to T2D in obese individuals.


2015 ◽  
Vol 83 (7) ◽  
pp. 2627-2635 ◽  
Author(s):  
Carrie E. Lasky ◽  
Rachel M. Olson ◽  
Charles R. Brown

Infection of C3H mice withBorrelia burgdorferi, the causative agent of Lyme disease, reliably produces an infectious arthritis and carditis that peak around 3 weeks postinfection and then spontaneously resolve. Macrophage polarization has been suggested to drive inflammation, the clearance of bacteria, and tissue repair and resolution in a variety of infectious disease models. During Lyme disease it is clear that macrophages are capable of clearingBorreliaspirochetes and exhausted neutrophils; however, the role of macrophage phenotype in disease development or resolution has not been studied. Using classical (NOS2) and alternative (CD206) macrophage subset-specific markers, we determined the phenotype of F4/80+macrophages within the joints and heart throughout the infection time course. Within the joint, CD206+macrophages dominated throughout the course of infection, and NOS2+macrophage numbers became elevated only during the peak of inflammation. We also found dual NOS2+CD206+macrophages which increased during resolution. In contrast to findings for the ankle joints, numbers of NOS2+and CD206+macrophages in the heart were similar at the peak of inflammation. 5-Lipoxygenase-deficient (5-LOX−/−) mice, which display a failure of Lyme arthritis resolution, recruited fewer F4/80+cells to the infected joints and heart, but macrophage subset populations were unchanged. These results highlight differences in the inflammatory infiltrates during Lyme arthritis and carditis and demonstrate the coexistence of multiple macrophage subsets within a single inflammatory site.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A793-A794
Author(s):  
Josiah Flaming ◽  
Raghav Chandra ◽  
Luc Girard ◽  
Debolina Ganguly ◽  
Jason Toombs ◽  
...  

BackgroundThe plasticity of macrophage phenotype within the tumor microenvironment (TME) correlates with prognosis in non-small cell lung cancer (NSCLC).1 M2-like macrophages promote immunosuppression and facilitate tumor progression, while M1-like macrophages may drive an inflammatory antitumor immune response.2 Through a novel co-culture model comprised of cancer cells, cancer-associated fibroblasts (CAFs), and macrophages, we investigated whether NSCLC oncogenotype impacts macrophage phenotype and postulated that the immunosuppressive activity of macrophages is mediated through tumor-secreted soluble molecules. If identified and inhibited, these may re-sensitize cancer cells to immune surveillance and enhance antitumor immunity.MethodsWe developed an in vitro co-culture system (patient-derived NSCLC cells, human CAFs, and mouse macrophages) to interrogate impact of NSCLC cells and CAFs on macrophage phenotype. Expression of salient macrophage genes (i.e. ARG1, NOS2, IL-1β, IL-6, CHIL-3, SOCS3) was investigated through species-specific qPCR. Whole-genome RNA sequencing (RNAseq) in select cases was conducted and cytokine arrays measuring expression of 40 inflammatory cytokines were performed. Positive controls included stimulation of macrophages with LPS and IL-4.ResultsMore than 70 NSCLC cell lines were characterized in the co-culture assay. Three highly reproducible clusters of macrophage phenotypes were identified: high Arginase (immunosuppressive), high IL-1β (inflammatory) and high SOCS3 (inflammatory, involved in JAK-STAT3 pathway) (figure 1).3 4 Major oncogenotypes (i.e. KRAS, TP53, STK11, EGFR, BRAF mutation) did not correlate with macrophage phenotype (figure 2). Analyses of differences between the 3 clusters is ongoing. 10 exemplar NSCLC lines representing each of these 3 clusters were selected for RNA sequencing (mouse genes) and cytokine array protein (human) profiling. Across all clusters, we found suppression of macrophage endocytosis pathways and activation of scavenger receptor A (SRA) signaling, reflecting an M2-like phenotype.5 We also observed increased expression of human IL-6, IL-8, and MCP1, which are implicated in suppression of innate immune sensing of tumor cells (figure 3). RNAseq of CAF lines demonstrated mixed inflammatory and myofibroblastic phenotypes (figure 4), with increased expression of genes associated with macrophage recruitment and activation including: IL-6, CSF-1, CXCL6, CCL2, and CCL7.6Abstract 746 Figure 1Three macrophage phenotypes induced in co-cultureHeatmap of mRNA expression from mouse macrophages co-cultured with human NSCLC cells and CAFs. mRNA expression of salient mouse macrophage genes depicted (x-axis) for each NSCLC cell line co-culture (y-axis).Abstract 746 Figure 2Macrophage phenotype independent of oncogenotypePercentage of mutations of known human NSCLC oncogenes per mouse macrophage phenotype cluster.Abstract 746 Figure 3Upregulation of macrophage-related cytokinesCytokine array assays demonstrating relative expression of cytokines and chemokines from individual cell types or multicellular co-cultures associated with macrophage recruitment and polarizationAbstract 746 Figure 4Mixed expression of iCAF and myCAF genes on RNAseqHeatmap of RNAseq transcriptome of human CAFs from co-culture model reflecting relative expression of known genes associated inflammatory (iCAF, top) and myofibroblastic (myCAF, bottom) phenotypes.Abstract 746 Figure 5Novel co-culture model of NSCLC TMEDepiction of novel co-culture model with mouse bone-marrow derived macrophages, human NSCLC cells, and human CAFs with a representative immunohistochemical fluorescence image in vitroConclusionsThrough this novel co-culture model (figure 5), we demonstrate that patient-derived NSCLC cells reproducibly induce three major macrophage phenotypes in an oncotype-independent manner. Furthermore, cytokine release from NSCLC cells and CAFs is implicated in this process. This co-culture model provides a physiologically consistent experimental platform to identify tumor cell and CAF features that drive macrophage phenotype which may be suitable for targeted therapy.AcknowledgementsWe thank the McDermott Center Next-Generation Sequencing Core at UT Southwestern. Figure 5 was created with Biorender.comReferencesSumitomo R, Hirai T, Fujita M, et al. M2 tumor associated macrophages promote tumor progression in non small cell lung cancer. Exp Ther Med 2019 Dec 1;18(6):4490–8.Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci 2019 Dec;26(1):1–3.Orecchioni M, Ghosheh Y, Pramod A, et al. Macrophage polarization: different gene signatures in M1 (LPS+) vs. classically and M2 (LPS–) vs. alternatively activated macrophages. Front. Immunol 2019 May 24;10:1084.Wilson HM. SOCS proteins in macrophage polarization and function. Front. Immunol 2014 Jul 28;5:357.Sun Y, Xu S. Tumor-associated CD204-positive macrophage is a prognostic marker in clinical stage I lung adenocarcinoma. Biomed Res. Int 2018 Jan 1;2018.O’Hayre M, Salanga C, Handel T, et al. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem. J 2008 Feb 1;409(3):635–49


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qin Zhao ◽  
Miusi Shi ◽  
Chengcheng Yin ◽  
Zifan Zhao ◽  
Jinglun Zhang ◽  
...  

AbstractThe immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Rui-zhen Sun ◽  
Ying Fan ◽  
Xiao Liang ◽  
Tian-tian Gong ◽  
Qi Wang ◽  
...  

Foam cell formation and macrophage polarization are involved in the pathologic development of atherosclerosis, one of the most important human diseases affecting large and medium artery walls. This study was designed to assess the effects of rapamycin and FTY720 (fingolimod) on macrophages and foam cells. Mouse peritoneal macrophages were collected and treated with rapamycin and FTY720 to study autophagy, polarization, and lipid accumulation. Next, foam cells were formed by oxidizing low-density lipoprotein to observe changes in lipid accumulation, autophagy, and polarization in rapamycin-treated or FTY720-treated foam cells. Lastly, foam cells that had been treated with rapamycin and FTY720 were evaluated for sphingosine 1-phosphate receptor (S1prs) expression. Autophagy microtubule-associated protein 1 light chain 3- (LC3-) II was increased, and classically activated macrophage phenotype markers interleukin- (IL-) 6, cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS) were increased, whereas alternatively activated macrophage phenotype markers transforming growth factor- (TGF-)β, arginase 1 (Arg1), and mannose receptor C-type 1 (Mrc1) were decreased by rapamycin in peritoneal macrophages. LC3-II was also obviously enhanced, though polarization markers were unchanged in rapamycin-treated foam cells. Moreover, lipid accumulation was inhibited in rapamycin-treated macrophage cells but was unchanged in rapamycin-treated foam cells. For FTY720, LC3-II did not change, whereas TGF-β, Arg1 and Mrc1 were augmented, and IL-6 was suppressed in macrophages. However, LC3-II was increased, and TGF-β, ARG1 and MRC1 were strikingly augmented, whereas IL-6, COX2 and iNOS could be suppressed in foam cells. Furthermore, lipid accumulation was alleviated in FTY720-treated foam cells. Additionally, S1pr1 was markedly decreased in foam cells (P< .05); S1pr2, S1pr3, S1pr4 and S1pr5 were unchanged in rapamycin-treated foam cells. In FTY720-treated foam cells, S1pr3 and S1pr4 were decreased, and S1pr1, S1pr2 and S1pr5 were unchanged. Therefore, we deduced that rapamycin stimulated classically activated macrophages and supressed early atherosclerosis. Rapamycin may also stabilize artery plaques by preventing apoptosis and S1PR1 in advanced atherosclerosis. FTY720 allowed transformation of foam cells into alternatively activated macrophages through the autophagy pathway to alleviate advanced atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document