Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin

2019 ◽  
Vol 11 (43) ◽  
pp. 40716-40725 ◽  
Author(s):  
Jie Qiu ◽  
Xiaohui Guo ◽  
Ran Chu ◽  
Siliang Wang ◽  
Wei Zeng ◽  
...  
2013 ◽  
Vol 823 ◽  
pp. 291-295 ◽  
Author(s):  
Shou Chen Chai ◽  
Peng Yang ◽  
Cheng Jia Yang ◽  
Chun Li Cai ◽  
Na Yu

In the space restricted airtight environment that people lives in, detecting harmful gas by miniature gas chromatography is the practical requirement at present, however, PIDs performance is key factor that restrict the application of miniature gas chromatography, the redesign of the detectors gas route in this paper aiming at improve detectors stability observably, and schemed out miniature PID with high sensitivity, low detection limit and fast response. The result of the experiment shows that the detection limit is 0.04ppm, the sensitivity is 101mv/ppm,the stability is 0.04×10-6/24h,meeting the project requirement. Keywords: photoionization detector; ionization chamber; sensitivity; detection limit;


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5955
Author(s):  
Qi-Ying Weng ◽  
Ya-Li Zhao ◽  
Jia-Ming Li ◽  
Miao Ouyang

A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca− monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca− and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72− in aqueous media.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Wei Ye ◽  
Taomei Liu ◽  
Weimin Zhang ◽  
Muzi Zhu ◽  
Zhaoming Liu ◽  
...  

Marine toxins cause great harm to human health through seafood, therefore, it is urgent to exploit new marine toxins detection methods with the merits of high sensitivity and specificity, low detection limit, convenience, and high efficiency. Aptasensors have emerged to replace classical detection methods for marine toxins detection. The rapid development of molecular biological approaches, sequencing technology, material science, electronics and chemical science boost the preparation and application of aptasensors. Taken together, the aptamer-based biosensors would be the best candidate for detection of the marine toxins with the merits of high sensitivity and specificity, convenience, time-saving, relatively low cost, extremely low detection limit, and high throughput, which have reduced the detection limit of marine toxins from nM to fM. This article reviews the detection of marine toxins by aptamer-based biosensors, as well as the selection approach for the systematic evolution of ligands by exponential enrichment (SELEX), the aptamer sequences. Moreover, the newest aptasensors and the future prospective are also discussed, which would provide thereotical basis for the future development of marine toxins detection by aptasensors.


RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13438-13443 ◽  
Author(s):  
Jiao Liu ◽  
Hong-Wei Li ◽  
Yuqing Wu

The ultrabright AuNCs@AMP are used as fluorescence probe to detect lactate dehydrogenase (LDH) with high sensitivity and selectivity, showing an extremely low detection limit of 0.2 nM (26 pg μL−1, 0.8 U L−1).


2021 ◽  
Author(s):  
Siddesh Umapathi ◽  
Harish Singh ◽  
Jahangir Masud ◽  
Manashi Nath

CuSe nanostructures exhibit high-efficiency for glucose detection with high sensitivity (19.419 mA mM−1 cm−2) and selectivity at low applied potential (0.15 V vs. Ag|AgCl), low detection limit (0.196 μM) and linear detection range (100 nM to 40 μM).


2021 ◽  
Author(s):  
Xin Zheng ◽  
Shifeng Zhang ◽  
Shuxing Bao ◽  
Jingjin Shen

2001 ◽  
Vol 76 (1-3) ◽  
pp. 519-526 ◽  
Author(s):  
A. Poghossian ◽  
M.J. Schöning ◽  
P. Schroth ◽  
A. Simonis ◽  
H. Lüth

RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92564-92572 ◽  
Author(s):  
Radhakanta Ghosh ◽  
Sandip Das ◽  
Dhruba P. Chatterjee ◽  
Arun K. Nandi

A new fluorometric cyanide sensor using cationic polythiophene exhibits high sensitivity, selectivity with a low detection limit (4.4 ppb) in water.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85787-85794 ◽  
Author(s):  
Xiao-Lin Lu ◽  
Min Xia

A novel V-shaped probe is reported with extremely rapid response, high selectivity and very low detection limit to cyanide anions in aqueous solution based on the intensely emissive aggregates of the probe adduct.


Sign in / Sign up

Export Citation Format

Share Document