Near-Infrared-II Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photodynamic/Immune Therapy

ACS Nano ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 515-525
Author(s):  
Qiang Liu ◽  
Jiangwei Tian ◽  
Ye Tian ◽  
Qinchao Sun ◽  
Dan Sun ◽  
...  
Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 114 ◽  
Author(s):  
Ping-Chih Hsu ◽  
Cheng-Ta Yang ◽  
David Jablons ◽  
Liang You

The programmed death-ligand 1(PD-L1)/PD-1 pathway is an immunological checkpoint in cancer cells. The binding of PD-L1 and PD-1 promotes T-cell tolerance and helps tumor cells escape from host immunity. Immunotherapy targeting the PD-L1/PD-1 axis has been developed as an anti-cancer therapy and used in treating advanced human non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Yes-associated protein (YAP) is a key mediator of the Hippo/YAP signaling pathway, and plays important roles in promoting cancer development, drug resistance and metastasis in human NSCLC and MPM. YAP has been suggested as a new therapeutic target in NSCLC and MPM. The role of YAP in regulating tumor immunity such as PD-L1 expression has just begun to be explored, and the correlation between YAP-induced tumorigenesis and host anti-tumor immune responses is not well known. Here, we review recent studies investigating the correlation between YAP and PD-L1 and demonstrating the mechanism by which YAP regulates PD-L1 expression in human NSCLC and MPM. Future work should focus on the interactions between Hippo/YAP signaling pathways and the immune checkpoint PD-L1/PD-1 pathway. The development of new synergistic drugs for immune checkpoint PD-L1/PD-1 blockade in NSCLC and MPM is warranted.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Man-Chin Chen ◽  
Christian Ronquillo Pangilinan ◽  
Che-Hsin Lee

Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.


2020 ◽  
Vol 15 (9) ◽  
pp. 1449-1459 ◽  
Author(s):  
Lingzhi Hong ◽  
Marcelo V. Negrao ◽  
Seyedeh S. Dibaj ◽  
Runzhe Chen ◽  
Alexandre Reuben ◽  
...  

2021 ◽  
Vol 64 (5) ◽  
pp. 342-348
Author(s):  
Jin Won Kim

Immuno-oncological treatment approaches, particularly with the use of immune checkpoint inhibitors such as antiprogrammed death 1 (PD-1)/programmed death ligand 1 antibody or anti-cytotoxic T-lymphocyte associated protein 4 antibody, have become the standard treatment for gastrointestinal cancers. However, gastrointestinal cancers show an overall modest tumor response to immune checkpoint inhibitors. Nevertheless, subgroups such as tumors that are DNA mismatch repair-deficient or have high microsatellite instability particularly benefit from immune checkpoint inhibitors. Even in the first-line setting for colorectal cancer, the clinical efficacy of pembrolizumab, an anti–PD-1 antibody, was superior to that of chemotherapy. Recently, a combination of atezolizumab, an anti-programmed death ligand 1 antibody, and bevacizumab was approved as the first-line treatment for hepatocellular carcinoma, and was reported as superior to sorafenib. Nivolumab, an anti–PD-1 antibody that is added to chemotherapy as the first-line treatment for gastric cancer, resulted in longer survival compared with chemotherapy alone. Further studies are ongoing to investigate additional immune checkpoint inhibitors for other gastrointestinal cancers. This review aims to provide an overview of the results of clinical trials for immune checkpoint inhibitors in gastrointestinal cancers, including colorectal cancer, gastric cancer, hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer.


Sign in / Sign up

Export Citation Format

Share Document