scholarly journals Visualizing Teixobactin Supramolecular Assemblies and Cell Wall Damage in B. Subtilis Using CryoEM

ACS Omega ◽  
2021 ◽  
Author(s):  
Paul Joshua Hurst ◽  
Michael A. Morris ◽  
Annissa A. Graham ◽  
James S. Nowick ◽  
Joseph P. Patterson

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1587
Author(s):  
Sara Behnami ◽  
Dario Bonetta

Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.



2011 ◽  
Vol 156 (3) ◽  
pp. 1364-1374 ◽  
Author(s):  
Lucinda Denness ◽  
Joseph Francis McKenna ◽  
Cecile Segonzac ◽  
Alexandra Wormit ◽  
Priya Madhou ◽  
...  


1995 ◽  
Vol 177 (12) ◽  
pp. 3534-3539 ◽  
Author(s):  
S T Lim ◽  
C K Jue ◽  
C W Moore ◽  
P N Lipke


2008 ◽  
Vol 19 (3) ◽  
pp. 1113-1124 ◽  
Author(s):  
Clara Bermejo ◽  
Estefanía Rodríguez ◽  
Raúl García ◽  
Jose M. Rodríguez-Peña ◽  
María L. Rodríguez de la Concepción ◽  
...  

Yeast mitogen-activated protein kinase (MAPK) signaling pathways transduce external stimuli into cellular responses very precisely. The MAPKs Slt2/Mpk1 and Hog1 regulate transcriptional responses of adaptation to cell wall and osmotic stresses, respectively. Unexpectedly, we observe that the activation of a cell wall integrity (CWI) response to the cell wall damage caused by zymolyase (β-1,3 glucanase) requires both the HOG and SLT2 pathways. Zymolyase activates both MAPKs and Slt2 activation depends on the Sho1 branch of the HOG pathway under these conditions. Moreover, adaptation to zymolyase requires essential components of the CWI pathway, namely the redundant MAPKKs Mkk1/Mkk2, the MAPKKK Bck1, and Pkc1, but it does not require upstream elements, including the sensors and the guanine nucleotide exchange factors of this pathway. In addition, the transcriptional activation of genes involved in adaptation to cell wall stress, like CRH1, depends on the transcriptional factor Rlm1 regulated by Slt2, but not on the transcription factors regulated by Hog1. Consistent with these findings, both MAPK pathways are essential for cell survival under these circumstances because mutant strains deficient in different components of both pathways are hypersensitive to zymolyase. Thus, a sequential activation of two MAPK pathways is required for cellular adaptation to cell wall damage.



2016 ◽  
Vol 212 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Erin M. Jonasson ◽  
Valentina Rossio ◽  
Riko Hatakeyama ◽  
Mitsuhiro Abe ◽  
Yoshikazu Ohya ◽  
...  

Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2–protein phosphatase 2ACdc55 (PP2ACdc55) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2–PP2ACdc55 promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1–Mpk1 activity inhibits cortical PP2ACdc55, ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2ACdc55 specifies Rho1 signaling output and that reciprocal antagonism between Rho1–PP2ACdc55 and Rho1–Pkc1 explains how only one signaling pathway is robustly activated at a time.



2013 ◽  
Vol 58 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Awanish Kumar ◽  
Sanjiveeni Dhamgaye ◽  
Indresh Kumar Maurya ◽  
Ashutosh Singh ◽  
Monika Sharma ◽  
...  

ABSTRACTCurcumin (CUR) shows antifungal activity against a range of pathogenic fungi, includingCandida albicans. The reported mechanisms of action of CUR include reactive oxygen species (ROS) generation, defects in the ergosterol biosynthesis pathway, decrease in hyphal development, and modulation of multidrug efflux pumps. Reportedly, each of these pathways is independently linked to the cell wall machinery inC. albicans, but surprisingly, CUR has not been previously implicated in cell wall damage. In the present study, we performed transcriptional profiling to identify the yet-unidentified targets of CUR inC. albicans. We found that, among 348 CUR-affected genes, 51 were upregulated and 297 were downregulated. Interestingly, most of the cell wall integrity pathway genes were downregulated. The possibility of the cell wall playing a critical role in the mechanism of CUR required further validation; therefore, we performed specific experiments to establish if there was any link between the two. The fractional inhibitory concentration index values of 0.24 to 0.37 show that CUR interacts synergistically with cell wall-perturbing (CWP) agents (caspofungin, calcofluor white, Congo red, and SDS). Furthermore, we could observe cell wall damage and membrane permeabilization by CUR alone, as well as synergistically with CWP agents. We also found hypersusceptibility in calcineurin and mitogen-activated protein (MAP) kinase pathway mutants against CUR, which confirmed that CUR also targets cell wall biosynthesis inC. albicans. Together, these data provide strong evidence that CUR disrupts cell wall integrity inC. albicans. This new information on the mechanistic action of CUR could be employed in improving treatment strategies and in combinatorial drug therapy.



2015 ◽  
Vol 113 (2) ◽  
pp. 404-409 ◽  
Author(s):  
Tobias Dörr ◽  
Laura Alvarez ◽  
Fernanda Delgado ◽  
Brigid M. Davis ◽  
Felipe Cava ◽  
...  

The bacterial cell wall is critical for maintenance of cell shape and survival. Following exposure to antibiotics that target enzymes required for cell wall synthesis, bacteria typically lyse. Although several cell envelope stress response systems have been well described, there is little knowledge of systems that modulate cell wall synthesis in response to cell wall damage, particularly in Gram-negative bacteria. Here we describe WigK/WigR, a histidine kinase/response regulator pair that enablesVibrio cholerae, the cholera pathogen, to survive exposure to antibiotics targeting cell wall synthesis in vitro and during infection. Unlike wild-typeV. cholerae, mutants lackingwigRfail to recover following exposure to cell-wall–acting antibiotics, and they exhibit a drastically increased cell diameter in the absence of such antibiotics. Conversely, overexpression ofwigRleads to cell slimming. Overexpression of activated WigR also results in increased expression of the full set of cell wall synthesis genes and to elevated cell wall content. WigKR-dependent expression of cell wall synthesis genes is induced by various cell-wall–acting antibiotics as well as by overexpression of an endogenous cell wall hydrolase. Thus, WigKR appears to monitor cell wall integrity and to enhance the capacity for increased cell wall production in response to damage. Taken together, these findings implicate WigKR as a regulator of cell wall synthesis that controls cell wall homeostasis in response to antibiotics and likely during normal growth as well.



2014 ◽  
Vol 1 (3) ◽  
pp. 94-99 ◽  
Author(s):  
Qiuqiang Gao ◽  
◽  
Liang-Chun Liou ◽  
Qun Ren ◽  
Xiaoming Bao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document