scholarly journals Folic Acid-Conjugated Cellulose Nanocrystals Show High Folate-Receptor Binding Affinity and Uptake by KB and Breast Cancer Cells

ACS Omega ◽  
2018 ◽  
Vol 3 (10) ◽  
pp. 13952-13959 ◽  
Author(s):  
Katelyn Rose Bittleman ◽  
Shuping Dong ◽  
Maren Roman ◽  
Yong Woo Lee
2020 ◽  
Vol 19 (16) ◽  
pp. 1966-1982 ◽  
Author(s):  
Selvaraj Kunjiappan ◽  
Theivendren Panneerselvam ◽  
Saravanan Govindaraj ◽  
Pavadai Parasuraman ◽  
Suraj Baskararaj ◽  
...  

Objective: Site-specific and toxic-free drug delivery, is an interesting area of research. Nanoengineered drug delivery systems possess a remarkable potential for effective treatment of various types of cancers. Methods: In this study, novel Folic Acid (FA) conjugated keratin nanoparticles (NPs) were assembled with encapsulation and delivery of Rutin (Rt) into breast cancer cells through the overexpressed folate receptor. The biocompatible, Rt encapsulated FA conjugated keratin NPs (FA@Ker NPs) were successfully formulated by a modified precipitation technique. Their morphological shape and size, size distribution, stability, and physical nature were characterized and confirmed. The drug (Rt) encapsulation efficiency, loading capacity and release kinetics were also studied. Results: The observed results of molecular docking and density functionality theory of active drug (Rt) showed a strong interaction and non-covalent binding of the folate receptor and facilitation of endocytosis in breast cancer cells. Further, in vitro cytotoxic effect of FA@Ker NPs was screened against MCF-7 cancer cells, at 55.2 µg/mL of NPs and found to display 50% of cell death at 24h. Moreover, the NPs enhanced the uptake of Rt in MCF-7 cells, and the apoptotic effect of condensed nuclei and distorted membrane bodies was observed. Also, NPs entered into the mitochondria of MCF-7 cells and significantly increased the level of ROS which led to cell death. Conclusion: The developed FA@Ker NPs might be a promising way to enhance anti-cancer activity without disturbing normal healthy cells.


2019 ◽  
Vol 110 ◽  
pp. 906-917 ◽  
Author(s):  
Kandasamy Vinothini ◽  
Naresh Kumar Rajendran ◽  
Andy Ramu ◽  
Nandhakumar Elumalai ◽  
Mariappan Rajan

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2057
Author(s):  
Ricardo J. B. Pinto ◽  
Nicole S. Lameirinhas ◽  
Gabriela Guedes ◽  
Gustavo H. Rodrigues da Silva ◽  
Párástu Oskoei ◽  
...  

Cellulose nanocrystals (CNCs) are elongated biobased nanostructures with unique characteristics that can be explored as nanosystems in cancer treatment. Herein, the synthesis, characterization, and cellular uptake on folate receptor (FR)-positive breast cancer cells of nanosystems based on CNCs and a chitosan (CS) derivative are investigated. The physical adsorption of the CS derivative, containing a targeting ligand (folic acid, FA) and an imaging agent (fluorescein isothiocyanate, FITC), on the surface of the CNCs was studied as an eco-friendly methodology to functionalize CNCs. The fluorescent CNCs/FA-CS-FITC nanosystems with a rod-like morphology showed good stability in simulated physiological and non-physiological conditions and non-cytotoxicity towards MDA-MB-231 breast cancer cells. These functionalized CNCs presented a concentration-dependent cellular internalization with a 5-fold increase in the fluorescence intensity for the nanosystem with the higher FA content. Furthermore, the exometabolic profile of the MDA-MB-231 cells exposed to the CNCs/FA-CS-FITC nanosystems disclosed a moderate impact on the cells’ metabolic activity, limited to decreased choline uptake and increased acetate release, which implies an anti-proliferative effect. The overall results demonstrate that the CNCs/FA-CS-FITC nanosystems, prepared by an eco-friendly approach, have a high affinity towards FR-positive cancer cells and thus might be applied as nanocarriers with imaging properties for active targeted therapy.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 17
Author(s):  
Maria Mantzari ◽  
Foteini Gartziou ◽  
Eleni Lambrou ◽  
Spyridon Mourtas ◽  
Paraskevi Zagana ◽  
...  

Arsonoliposomes (ARSL) constitute a particular class of liposomes that incorporate arsonolipids (ARS) into their membranes. ARSL realize selective toxicity to cancer cells; thus, they are an important tool in the treatment of cancer. Folic acid (FA) is widely used in targeted drug delivery due to its high affinity for the folate receptors that are overexpressed in cancer cell membranes. The aim of our studies was to develop novel triple-negative breast cancer (TNBC)-targeted ARSL by incorporating folic acid-conjugated polyethylene-glycol PEG-lipid (FA-PEG-lipid) into their membrane and loading them with anticancer drug doxorubicin (DOX). ARSL incorporating 0.1 mol% of FA-PEG-lipid were prepared and loaded with DOX, using the active loading protocol. They were characterized for their size distribution, zeta potential and drug entrapment efficiency (%). Their cytotoxic activity towards TNBC cell lines, particularly MDA-MB-231 (epithelial human breast cancer cells) and MCF7 (human breast cancer cells), was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT-assay. The first results demonstrated enhanced toxicity of this novel type of ARSL towards cancer cells, which is particularly interesting and deserves further exploitation.


2019 ◽  
Vol 81 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Nadrajan Jawahar ◽  
Aninidta De ◽  
Selveraj Jubee ◽  
Ekkuluri Surendra Reddy

2021 ◽  
Author(s):  
Abdolamir Ghadaksaz ◽  
Abbas Ali Imani Fooladi ◽  
Hamideh Mahmoodzadeh Hosseini ◽  
Taher Nejad Satari ◽  
Mohsen Amin

Abstract PurposeTargeted cancer therapies based on overexpressed receptors and the fractions containing immunotoxins and bacterial metabolites are one of the well-known methods to overcome the chemotherapy resistance of cancer cells. In this paper, we design ARA-linker-TGFαL3, using Arazyme, a Serratia proteamaculans metabolite, and a third loop segment of TGFα to target EGFR expressing breast cancer cells.MethodsAfter cloning in pET28a (+), the expression of recombinant protein was optimized in E. coli strain BL21 (DE3). MDA-MB-468 (EGFR positive) and MDA-MB-453 (EGFR negative) breast cancer cell lines were employed. Also, the chemotherapeutic drug, Taxotere (Docetaxel), was employed to compare cytotoxicity effects. Cell ELISA assessed the binding affinity of recombinant proteins to the receptor, and the cytotoxicity was detected by MTT and lactate dehydrogenase release assays. The interfacing with cancer cell adhesion was evaluated. Furthermore, the induction of apoptosis was examined by using flow cytometric analysis, and caspase-3 activity assay. Moreover, RT-PCR was conducted to study the expression of apoptosis (bax, bcl2, and casp3), angiogenesis (vegfr2), and metastasis (mmp2 and mmp9) genes. ResultsARA-linker-TGFαL3 revealed a higher binding affinity, cytotoxicity, and early apoptosis induction in MDA-MB-468 compared to the effects of Arazyme while both recombinant proteins showed similar effects on MDA-MB-453. In addition, the Taxotere caused the highest cytotoxicity on cancer cells through induction of late apoptosis. Meanwhile, the expression of angiogenesis and metastasis genes was decreased in both cell lines after treatment with either ARA-linker-TGFαL3 or Arazyme. ConclusionsOur in vitro results indicated the therapeutic effect of ARA-linker-TGFαL3 on breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document