scholarly journals Correction to “Light Dependent Morphological Changes Can Tune Light Absorption in Iridescent Plant Chloroplasts: A Numerical Study Using Biologically Realistic Data”

ACS Photonics ◽  
2021 ◽  
Author(s):  
Miguel A. Castillo ◽  
William P. Wardley ◽  
Martin Lopez-Garcia
2020 ◽  
Author(s):  
Miguel A. Castillo ◽  
William P. Wardley ◽  
Martin Lopez-Garcia

AbstractChloroplasts, the organelles responsible for photosynthesis in most plants and algae, exhibit a variety of morphological adaption strategies to changing light environments which can have important yet overlooked light scattering effects. This can be even more significant for iridoplasts, specialized chloroplasts whose tissue is arranged as a photonic multilayer producing a characteristic strong blue reflectance associated to a wavelength selective absorption enhancement relevant for photosynthesis.In this work, we study how the photonic properties of iridoplasts are affected by light induced dynamic changes using realistic data extracted from previous reports. Our results show a reflectance red-shift from blue to green under increasing light intensity. Consequently, the light absorption enhancement induced by the photonic nanostructure is also redshifted. We also show that the photonic properties are resilient to biologically realistic levels of disorder in the structure. We extended this analysis to another photonic nanostructure-containing chloroplast, known as a bisonoplast, and found similar results, pointing towards similar properties in different plant species. We finally found that all types of chloroplasts can tune light absorption depending on light conditions. In general, our study opens the door to understanding how dynamic morphologies in chloroplasts can affect light scattering and absorption.


2014 ◽  
Vol 6 ◽  
pp. 541717
Author(s):  
Su Jingbo ◽  
Zhu Feng ◽  
Geng Ying ◽  
Ni Xingye

In order to study the wave overtopping process, this paper establishes a two-dimensional numerical wave flume based on a meshless algorithm, local method of approximate particular solution (the LMAPS method), and the technology of momentum source wave. It calculates the climbing and overtopping process under regular waves on a typical slope, results of which are more consistent with the physical model test results. Finally, wave action simulation is carried out on six different structural forms of wave walls (vertical wave wall, 1/4 arc wave wall, reversed-arc wave wall, smooth surface wave wall with 1: 3 slope ratio, smooth surface wave wall with 1: 1.5 slope ratio and stepped surface wave wall with 1: 1.5 slope ratio). Numerical results of the simulation accurately describe the wave morphological changes in the interaction of waves and different structural forms of wave walls, in which, average error of wave overtopping is roughly 6.2% compared with the experimental values.


2013 ◽  
Vol 353-356 ◽  
pp. 2515-2519
Author(s):  
Dong Dong Jia ◽  
Xue Jun Shao ◽  
Xing Nong Zhang ◽  
Chang Ying Chen

The discharge process influences the morphological evolutions of alluvial rivers, even the channel pattern evolutions. The impacts of discharge processes on morphological evolutions in an experimental channel were investigated by a 3-D mathematical model, in which turbulence flow and sediment transport as well as bank erosion were modeling. The simulated results demonstrated that the discharge process had significant effects on morphological changes. Planfrom evolution in the period with large discharge was much more notable than that with small discharge. Different discharge processes may lead to different channel patterns. A single meandering channel was formed under steady flow condition. A braided channel was observed with unsteady flow condition.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1806 ◽  
Author(s):  
Gabriela Medellín ◽  
Alec Torres-Freyermuth ◽  
Giuseppe Tomasicchio ◽  
Antonio Francone ◽  
Peter Tereszkiewicz ◽  
...  

The understanding of the beach capability to resist and recover from a disturbance is of paramount importance in coastal engineering. However, few efforts have been devoted to quantifying beach resilience. The present work aims to investigate the shoreline resistance and resilience, associated to a transient disturbance, on a sandy beach. A temporary groin was deployed for 24 h on a micro-tidal sea-breeze dominated beach to induce a shoreline perturbation. Morphological changes were measured by means of beach surveys to estimate the beach perturbation and the further beach recovery after structure removal. An Empirical Orthogonal Function (EOF) analysis of the shoreline position suggests that the first EOF mode describes the spatial-temporal evolution of the shoreline owing to the groin deployment/removal. A new one-line numerical model of beach evolution is calibrated with the field surveys, reproducing both the sediment impoundment and subsequent beach recovery after the structure removal. Thus, a parametric numerical study is conducted to quantify resistance and resilience. Numerical results suggest that beach resistance associated to the presence of a structure decreases with increasing alongshore sediment transport potential, whereas resilience after structure removal is positively correlated with the alongshore diffusivity.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450005 ◽  
Author(s):  
G. Wesley Putra Data ◽  
Alexander A. Iskandar ◽  
May-On Tjia

We report the result of a numerical study of surface plasmon induced anomalous behaviors in TE light scattering by single silver and gold nanowires of radius a. Going beyond the restricted case of nondissipative and nondispersive scatterers often reported previously, the current numerical calculation is performed directly on the basis of Mie's general formula, adopting the refractive index data of Johnson and Christy. Our result does not show the appearance of well resolved and multipole resonances in Q sca plotted against q(= 2πa/λ), for certain wire radii. It does show however, the growing contributions of the higher order modes as a increases. A series of closely-placed but well separated resonance curves nevertheless show up for varying wire radii within the range of small q, exhibiting systematic changes indicative of the size effects on the scattered waves. The further deduced Q sca (λ) spectra display the distinct resonance curves for different wire radii showing peculiar mix of monotonous and nonmonotonous variations of the resonance peak and spectral width with increasing a, as a result of complicated competitions among the growing contributions of the higher order modes. Finally, while the silver and gold scatterers appear to exhibit qualitatively similar behaviors, they differ largely in details due to the significantly different indices of refraction and dispersive properties.


Author(s):  
Amin Deyranlou ◽  
Christopher A. Miller ◽  
Alistair Revell ◽  
Amir Keshmiri

AbstractAtrial fibrillation (AF) can alter intra-cardiac flow and cardiac output that subsequently affects aortic flow circulation. These changes may become more significant where they occur concomitantly with ageing. Aortic ageing is accompanied with morphological changes such as dilation, lengthening, and arch unfolding. While the recognition of AF mechanism has been the subject of numerous studies, less focus has been devoted to the aortic circulation during the AF and there is a lack of such investigation at different ages. The current work aims to address the present gap. First, we analyse aortic flow distribution in three configurations, which attribute to young, middle and old people, using geometries constructed via clinical data. We then introduce two transient inlet flow conditions representative of key AF-associated defects. Results demonstrate that both AF and ageing negatively affect flow circulation. The main consequence of concomitant occurrence is enhancement of endothelial cell activation potential (ECAP) throughout the vascular domain, mainly at aortic arch and descending thoracic aorta, which is consistent with some clinical observations. The outcome of the current study suggests that AF exacerbates the vascular defects occurred due to the ageing, which increases the possibility of cardiovascular diseases per se.


2021 ◽  
Author(s):  
Leila Shabani ◽  
ahmad mohammadi ◽  
Tahmineh Jalali

Abstract In this paper, the light absorption the active layer of polymer polymer solar cells (OPV) by using plasmonic nanocrystals with hexagonal lattice is investigated. To study the relation between the performance of the OPV solar cell and its active layer, a three-dimensional model for its morphology is utilized. Therefore, the three-dimensional (3D) finite-difference time-domain method and Lumirical software were used to measure the field distribution and light absorption in the active layer in terms of wavelength. OPV solar cells with bilayer and bulk heterojunction structured cells were designed using hexagonal lattice crystals with plasmonic nanoparticles, as well as, core-shell geometry to govern a design to optimize light trapping in the active layer. The parameters of shape, material, periodicity, size, the thickness of the active layer as a function of wavelength in OPV solar cells have been investigated. A very thin active layer and an ultra-thin shell were used to achieve the highest increase in optical absorption. The strong alternating electromagnetic field around the core-shell plasmonic nanoparticles resulting from the localized surface plasmon resonance (LSPR) suggested by the Ag plasmonic nanocrystals increased the intrinsic optical absorption in the active layer poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM). Based on the photovoltaic results the short circuit current ranged from 19.7 to 26.7 mA/cm2.PACs Number: 88.40.hj, 88.40.jj, 42.70.Qs


Sign in / Sign up

Export Citation Format

Share Document