Nanocomposite Films Based on Xylan-Rich Hemicelluloses and Cellulose Nanofibers with Enhanced Mechanical Properties

2011 ◽  
Vol 12 (9) ◽  
pp. 3321-3329 ◽  
Author(s):  
Xin-wen Peng ◽  
Jun-li Ren ◽  
Lin-xin Zhong ◽  
Run-cang Sun
2020 ◽  
Vol 993 ◽  
pp. 631-637
Author(s):  
Yu Zhe Lin ◽  
Jia Min Zeng ◽  
Jing Hong Ma ◽  
Jing Hua Gong

Waterborne polyurethane (WPU) is a new type of polyurethane system, which using water instead of organic solvent as dispersing medium. Because of its non-toxicity and environmental safety, WPU is considered as the development direction of coatings and adhesives. However, the mechanical properties of WPU are worse than that of solvent-based polyurethane, therefore, the modification of WPU has received increasingly attention. Meanwhile numerous evidences demonstrate the excellent properties of cellulose nanofibers (CNFs) such as high aspect ratio, low weight and outstanding mechanical strength. Therefore, there is a high expectation for CNFs to be introduced into WPU as reinforcing filler. In this work, a series of CNFs/WPU nanocomposite films were prepared by solution blending. The structure, morphology, thermal behavior and mechanical properties were investigated. SEM results showed that CNFs were evenly dispersed in the WPU matrix. Tensile tests indicated that the modulus and tensile strength of CNFs/WPU nanocomposite films were improved compared with the neat film. While the break elongation of the nanocomposite films decreased with the increase of CNFs content. The synergistic interaction between CNFs and WPU matrix plays an important role in the enhancement of mechanical properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Denis Mihaela Panaitescu ◽  
Raluca Augusta Gabor ◽  
Adriana Nicoleta Frone ◽  
Eugeniu Vasile

Nanocomposite films were prepared from polyamide 11 (PA11) and cellulose nanofibers (CN) by melt compounding and compression molding. The impact of thermal treatment on the morphology and mechanical behavior of PA11 and nanocomposite films was studied using dynamic mechanical analysis, tensile tests, X-ray diffraction (XRD), and peak force (PF) QNM technique. Slightly higher storage modulus values were obtained for nanocomposites compared to the matrix before the treatment, but a noticeable increase was observed after the treatment. Although CN addition determined increased tensile strength and modulus both before and after the treatment, the increase was much more significant in the case of treated films. The best mechanical properties were shown by treated PA11 films containing 5 wt% CN, with 40% higher Young’s modulus and with 35% higher tensile strength compared to the matrix. Some of the changes pointed out by static and dynamic mechanical tests were explained by the morphological changes determined by the thermal treatment and emphasized by PF QNM and by the increase of XRD crystallinity. A transition from lamellar stack morphology to one involving spherulites was highlighted by AFM. Thermal treatment has proved a valuable method for improving the mechanical properties of PA11/CN composites.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Mengxia Wang ◽  
Xiaran Miao ◽  
Hui Li ◽  
Chunhai Chen

Cellulose nanofibers (CNF), representing the nano-structured cellulose, have attained an extensive research attention due to their sustainability, biodegradability, nanoscale dimensions, large surface area, unique optical and mechanical performance, etc. Different lengths of CNF can lead to different extents of entanglements or network-like structures through van der Waals forces. In this study, a series of polyvinyl alcohol (PVA) composite films, reinforced with CNF of different lengths, were fabricated via conventional solvent casting technique. CNF were extracted from jute fibers by tuning the dosage of sodium hypochlorite during the TEMPO-mediated oxidation. The mechanical properties and thermal behavior were observed to be significantly improved, while the optical transparency decreased slightly (Tr. > 75%). Interestingly, the PVA/CNF20 nanocomposite films exhibited higher tensile strength of 34.22 MPa at 2 wt% filler loading than the PVA/CNF10 (32.55 MPa) while displayed higher elastic modulus of 482.75 MPa than the PVA/CNF20 films (405.80 MPa). Overall, the findings reported in this study provide a novel, simple and inexpensive approach for preparing the high-performance polymer nanocomposites with tunable mechanical properties, reinforced with an abundant and renewable material.


Author(s):  
Nguyen Tuong Vy ◽  
Nguyen Thi Khoi Pham ◽  
Lam Quoc Ha

Polyvinyl alcohol (PVA) is well-known in the packaging industry, especially in the food and medical fields with the ability to be completely biodegradable and easily soluble in cold water therefore products made from it are the environmentally friendly materials. However, the disadvantages of this polymer as quick dissolubility in water, poor moisture retention, weak mechanical properties reduce its applications. In this study, PVA, reinforced by “green” components at the nanometer-level such as nanocellulose fibers (CNF), graphene oxide (GO) nanosheets showed improvements in properties. Mechanical properties of all of nanocomposite films showed improvements in stress at break and modulus. Especially, reinforced GO and CNF films increased almost doubled and improved more 40% in modulus than the pure PVA film and films reinforced by only GO or CNF. When immersed in water (neutral pH) at room temperature, graphene oxide-reinforced films not only had effective improvements in swelling time but also supported to decrease water retension of film added CNF. The combined reinforcement also indicated a benefit in reducing the rate of water vapor loss of the film as well as the efficiency in declining the moisture absorption of the nanocomposite films. The PVA films reinforced by nanocellulose fibers and graphene oxide sheets overcomed some of the PVA's shortcomings. This helped expanding its applications in the field of environmentally friendly nanocomposite films.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document