scholarly journals Influence of Thermal Treatment on Mechanical and Morphological Characteristics of Polyamide 11/Cellulose Nanofiber Nanocomposites

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Denis Mihaela Panaitescu ◽  
Raluca Augusta Gabor ◽  
Adriana Nicoleta Frone ◽  
Eugeniu Vasile

Nanocomposite films were prepared from polyamide 11 (PA11) and cellulose nanofibers (CN) by melt compounding and compression molding. The impact of thermal treatment on the morphology and mechanical behavior of PA11 and nanocomposite films was studied using dynamic mechanical analysis, tensile tests, X-ray diffraction (XRD), and peak force (PF) QNM technique. Slightly higher storage modulus values were obtained for nanocomposites compared to the matrix before the treatment, but a noticeable increase was observed after the treatment. Although CN addition determined increased tensile strength and modulus both before and after the treatment, the increase was much more significant in the case of treated films. The best mechanical properties were shown by treated PA11 films containing 5 wt% CN, with 40% higher Young’s modulus and with 35% higher tensile strength compared to the matrix. Some of the changes pointed out by static and dynamic mechanical tests were explained by the morphological changes determined by the thermal treatment and emphasized by PF QNM and by the increase of XRD crystallinity. A transition from lamellar stack morphology to one involving spherulites was highlighted by AFM. Thermal treatment has proved a valuable method for improving the mechanical properties of PA11/CN composites.

2016 ◽  
Vol 36 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Ayyanar Athijayamani ◽  
Balasubramaniam Stalin ◽  
Susaiyappan Sidhardhan ◽  
Azeez Batcha Alavudeen

Abstract The present study describes the preparation of aligned unidirectional bagasse fiber-reinforced vinyl ester (BFRVE) composites and their mechanical properties such as tensile, flexural, shear and impact strength. Composites were prepared by a hand lay-up technique developed in our laboratory with the help of a hot press. Mechanical properties were obtained for different fiber contents by varying the number of layers. The obtained tensile property values were compared with the theoretical results. The results show that the tensile strength increased linearly up to 44 wt% and then dropped. However, the tensile modulus increased linearly from 17 wt% to 60 wt%. In the case of flexural properties, the flexural strength increased up to 53 wt% and started to decrease. However, the flexural modulus also increased linearly up to 60 wt%. The impact strength values were higher than the matrix materials for all the specimens. The short beam shear strength values were also increased up to 53 wt% and then dropped. The modified Bowyer and Bader (MBB) model followed by the Hirsch model shows a very good agreement with experimental results in both tensile strength and modulus.


2010 ◽  
Vol 150-151 ◽  
pp. 379-385
Author(s):  
Qun Lü ◽  
Qing Feng Zhang ◽  
Hai Ke Feng ◽  
Guo Qiao Lai

The wood-plastic composites (WPC) were prepared via compress molding by using the blends of high density polyethylene (HDPE) and modified polyethylene (MAPE) as the matrix and wood flour (WF) as filler. The effect of MAPE content in the matrix on the mechanical properties of the matrix and WPC was investigated. It was shown that the change of MAPE content in the matrix had no influence on the tensile strength of the matrix, but markedly reduced the impact strength of the matrix. Additionally, it had significant influence on the strength of WPC. When the content of wood flour and the content of the matrix remained fixed, with increasing the content of MAPE in the matrix, the tensile strength and the flexural strength of WPC tended to increase rapidly initially and then become steady. Moreover, with the increasing of MAPE concentration, the impact strength of WPC decreased when the low content of wood flour (30%) was filled, but increased at high wood flour loading (70%).


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1406
Author(s):  
Daoyuan Chen ◽  
Mingjin Ding ◽  
Zhixiong Huang ◽  
Yanbing Wang

In order to study the dynamic mechanical properties of styrene–acrylic latex with a core/shell structure, a variety of latexes were synthesized by semi-continuous seeded emulsion polymerization based on “particle design” with the same material. The latexes were characterized by rotary viscosimeter, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), dynamic mechanical analysis (DMA), and universal testing machine. The effects of difference at the glass transition temperature (Tg) of core and shell and the introduction of the “transition layer” on the damping and mechanical properties of latex film were studied. The results indicate that as the Tg of core and shell gets closer, the better the compatibility of core and shell, from phase separation to phase continuity. Furthermore, the introduction of the “transition layer” can effectively improve the tensile strength and tan δ (max) of the latex film. The tensile strength and maximum loss factor (f = 1 Hz) of latex with the “transition layer” increased by 36.73% and 29.11% respectively compared with the latex without the “transition layer”. This work provides a reference for the design of emulsion for damping coating.


Sign in / Sign up

Export Citation Format

Share Document