Preparation and Property of Waterborne Polyurethane/Cellulose Nanofiber Nanocomposite Films

2020 ◽  
Vol 993 ◽  
pp. 631-637
Author(s):  
Yu Zhe Lin ◽  
Jia Min Zeng ◽  
Jing Hong Ma ◽  
Jing Hua Gong

Waterborne polyurethane (WPU) is a new type of polyurethane system, which using water instead of organic solvent as dispersing medium. Because of its non-toxicity and environmental safety, WPU is considered as the development direction of coatings and adhesives. However, the mechanical properties of WPU are worse than that of solvent-based polyurethane, therefore, the modification of WPU has received increasingly attention. Meanwhile numerous evidences demonstrate the excellent properties of cellulose nanofibers (CNFs) such as high aspect ratio, low weight and outstanding mechanical strength. Therefore, there is a high expectation for CNFs to be introduced into WPU as reinforcing filler. In this work, a series of CNFs/WPU nanocomposite films were prepared by solution blending. The structure, morphology, thermal behavior and mechanical properties were investigated. SEM results showed that CNFs were evenly dispersed in the WPU matrix. Tensile tests indicated that the modulus and tensile strength of CNFs/WPU nanocomposite films were improved compared with the neat film. While the break elongation of the nanocomposite films decreased with the increase of CNFs content. The synergistic interaction between CNFs and WPU matrix plays an important role in the enhancement of mechanical properties.

2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540025 ◽  
Author(s):  
Hitoshi Takagi ◽  
Antonio N. Nakagaito ◽  
Kazuya Kusaka ◽  
Yuya Muneta

Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.


2011 ◽  
Vol 12 (9) ◽  
pp. 3321-3329 ◽  
Author(s):  
Xin-wen Peng ◽  
Jun-li Ren ◽  
Lin-xin Zhong ◽  
Run-cang Sun

2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750012 ◽  
Author(s):  
Farhad Jahantigh ◽  
Mehdi Nazirzadeh

In this project, nanocomposite films were prepared with different Titanium dioxide (TiO2) percentages. Properties of polycarbonate (PC) and PC–TiO2nanocomposite films were studied by X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy. The structure of samples was studied by XRD. The mechanical properties of PC–TiO2nanocomposite films were investigated by conducting tensile tests and hardness measurements. Thermal stability of the nanocomposites was studied by thermogravimetric analysis (TGA) method. The elastic modulus of the composite increased with increasing weight fraction of nanoparticles. The microhardness value increases with increasing TiO2nanoparticles. The results of tensile testing were in agreement with those of micro-hardness measurements. In addition, TGA curves showed that nanocomposite films have higher resistance to thermal degradation compared to polycarbonate. There are many reports related to the modification of polycarbonate films, but still a systematic study of them is required.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Denis Mihaela Panaitescu ◽  
Raluca Augusta Gabor ◽  
Adriana Nicoleta Frone ◽  
Eugeniu Vasile

Nanocomposite films were prepared from polyamide 11 (PA11) and cellulose nanofibers (CN) by melt compounding and compression molding. The impact of thermal treatment on the morphology and mechanical behavior of PA11 and nanocomposite films was studied using dynamic mechanical analysis, tensile tests, X-ray diffraction (XRD), and peak force (PF) QNM technique. Slightly higher storage modulus values were obtained for nanocomposites compared to the matrix before the treatment, but a noticeable increase was observed after the treatment. Although CN addition determined increased tensile strength and modulus both before and after the treatment, the increase was much more significant in the case of treated films. The best mechanical properties were shown by treated PA11 films containing 5 wt% CN, with 40% higher Young’s modulus and with 35% higher tensile strength compared to the matrix. Some of the changes pointed out by static and dynamic mechanical tests were explained by the morphological changes determined by the thermal treatment and emphasized by PF QNM and by the increase of XRD crystallinity. A transition from lamellar stack morphology to one involving spherulites was highlighted by AFM. Thermal treatment has proved a valuable method for improving the mechanical properties of PA11/CN composites.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1618
Author(s):  
Gabriela Toader ◽  
Aurel Diacon ◽  
Edina Rusen ◽  
Florica Rizea ◽  
Mircea Teodorescu ◽  
...  

This study describes a simple, practical, inexpensive, improved, and efficient novel method for obtaining polyurea-polyurethane-multiwall carbon nanotubes (MWCNTs) nanocomposites with enhanced mechanical properties, and their experimental testing in a dynamic regime. SEM and micro-CT investigations validated the homogeneity of the nanocomposite films and uniform dispersion of the nanofiller inside the polymeric matrix. The experimental measurements (TGA, DSC, DMA, and tensile tests) revealed improved thermal and mechanical properties of these new materials. To demonstrate that these nanocomposites are suitable for ballistic protection, impact tests were performed on aluminum plates coated with the polyurea-polyurethane MWCNTs nanocomposites, using a Hopkinson bar set-up. The experimental testing in the dynamic regime of the polyurea- polyurethane-coated aluminum plates confirmed that the nanocomposite layers allow the metal plate to maintain its integrity at a maximum force value that is almost 200% higher than for the uncoated metallic specimens.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1033
Author(s):  
Anna Kowalewska ◽  
Agata S. Herc ◽  
Joanna Bojda ◽  
Maria Nowacka ◽  
Mariia Svyntkivska ◽  
...  

Ternary blends of polylactide (PLA, 90 wt.%) and poly(methyl methacrylate) (PMMA, 10 wt.%) with functionalized polysilsesquioxanes (LPSQ-R) were obtained by solution blending. R groups in LPSQ containing hydroxyethyl (LPSQ-OH), methylglycolic (LPSQ-COOMe) and pentafluorophenyl (LPSQ-F5) moieties of different chemical properties were designed to modify PLA blends with PMMA. The effect of the type of LPSQ-R and their content, 1–3 wt.%, on the structure of the blends was studied with scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (SEM-EDS), dynamic mechanical thermal analysis (DMTA) and Raman spectroscopy. Differential scanning calorimetry (DSC) and tensile tests also showed various effects of LPSQ-R on the thermal and mechanical properties of the blends. Depth-sensing indentation was used to resolve spatially the micro- and nano-scale mechanical properties (hardness and elastic behaviour) of the blends. The results showed clearly that LPSQ-R modulate the structure and properties of the blends.


RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75440-75448 ◽  
Author(s):  
Suli Chen ◽  
Tao Jin ◽  
Wenling Wu ◽  
Guanghui Zhao

Superparamagnetic nanocomposite films based on waterborne polyurethane and hollow Ni0.3Zn0.5Fe2O4 nanospheres (WPU/h-NZFO) were synthesized via an in situ polymerization technique.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Mengxia Wang ◽  
Xiaran Miao ◽  
Hui Li ◽  
Chunhai Chen

Cellulose nanofibers (CNF), representing the nano-structured cellulose, have attained an extensive research attention due to their sustainability, biodegradability, nanoscale dimensions, large surface area, unique optical and mechanical performance, etc. Different lengths of CNF can lead to different extents of entanglements or network-like structures through van der Waals forces. In this study, a series of polyvinyl alcohol (PVA) composite films, reinforced with CNF of different lengths, were fabricated via conventional solvent casting technique. CNF were extracted from jute fibers by tuning the dosage of sodium hypochlorite during the TEMPO-mediated oxidation. The mechanical properties and thermal behavior were observed to be significantly improved, while the optical transparency decreased slightly (Tr. > 75%). Interestingly, the PVA/CNF20 nanocomposite films exhibited higher tensile strength of 34.22 MPa at 2 wt% filler loading than the PVA/CNF10 (32.55 MPa) while displayed higher elastic modulus of 482.75 MPa than the PVA/CNF20 films (405.80 MPa). Overall, the findings reported in this study provide a novel, simple and inexpensive approach for preparing the high-performance polymer nanocomposites with tunable mechanical properties, reinforced with an abundant and renewable material.


Author(s):  
Nguyen Tuong Vy ◽  
Nguyen Thi Khoi Pham ◽  
Lam Quoc Ha

Polyvinyl alcohol (PVA) is well-known in the packaging industry, especially in the food and medical fields with the ability to be completely biodegradable and easily soluble in cold water therefore products made from it are the environmentally friendly materials. However, the disadvantages of this polymer as quick dissolubility in water, poor moisture retention, weak mechanical properties reduce its applications. In this study, PVA, reinforced by “green” components at the nanometer-level such as nanocellulose fibers (CNF), graphene oxide (GO) nanosheets showed improvements in properties. Mechanical properties of all of nanocomposite films showed improvements in stress at break and modulus. Especially, reinforced GO and CNF films increased almost doubled and improved more 40% in modulus than the pure PVA film and films reinforced by only GO or CNF. When immersed in water (neutral pH) at room temperature, graphene oxide-reinforced films not only had effective improvements in swelling time but also supported to decrease water retension of film added CNF. The combined reinforcement also indicated a benefit in reducing the rate of water vapor loss of the film as well as the efficiency in declining the moisture absorption of the nanocomposite films. The PVA films reinforced by nanocellulose fibers and graphene oxide sheets overcomed some of the PVA's shortcomings. This helped expanding its applications in the field of environmentally friendly nanocomposite films.


Sign in / Sign up

Export Citation Format

Share Document