scholarly journals Protein Composition Correlates with the Mechanical Properties of Spider (Argiope trifasciata) Dragline Silk

2013 ◽  
Vol 15 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Mohammad Marhabaie ◽  
Thomas C. Leeper ◽  
Todd A. Blackledge
2013 ◽  
Vol 1569 ◽  
pp. 45-50 ◽  
Author(s):  
Audrey C. Ford ◽  
Hans Machula ◽  
Robert S. Kellar ◽  
Brent A. Nelson

ABSTRACTThis paper reports on mechanical characterization of electrospun tissue scaffolds formed from varying blends of collagen and human tropoelastin. The electrospun tropoelastin-based scaffolds have an open, porous structure conducive to cell attachment and have been shown to exhibit strong biocompatibility, but the mechanical character is not well known. Mechanical properties were tested for scaffolds consisting of 100% tropoelastin and 1:1 tropoelastin-collagen blends. The results showed that the materials exhibited a three order of magnitude change in the initial elastic modulus when tested dry vs. hydrated, with moduli of 21 MPa and 0.011 MPa respectively. Noncrosslinked and crosslinked tropoelastin scaffolds exhibited the same initial stiffness from 0 to 50% strain, and the noncrosslinked scaffolds exhibited no stiffness at strains >∼50%. The elastic modulus of a 1:1 tropoelastin-collagen blend was 50% higher than that of a pure tropoelastin scaffold. Finally, the 1:1 tropoelastin-collagen blend was five times stiffer from 0 to 50% strain when strained at five times the ASTM standard rate. By systematically varying protein composition and crosslinking, the results demonstrate how protein scaffolds might be manipulated as customized biomaterials, ensuring mechanical robustness and potentially improving biocompatibility through minimization of compliance mismatch with the surrounding tissue environment. Moreover, the demonstration of strain-rate dependent mechanical behavior has implications for mechanical design of tropoelastin-based tissue scaffolds.


2008 ◽  
Vol 17 (5) ◽  
pp. 553-564 ◽  
Author(s):  
K.-H. Guehrs ◽  
B. Schlott ◽  
F. Grosse ◽  
K. Weisshart

2012 ◽  
Vol 9 (75) ◽  
pp. 2479-2487 ◽  
Author(s):  
Sean J. Blamires ◽  
Chung-Lin Wu ◽  
Todd A. Blackledge ◽  
I-Min Tso

Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web.


2007 ◽  
Vol 93 (12) ◽  
pp. 4425-4432 ◽  
Author(s):  
T. Vehoff ◽  
A. Glišović ◽  
H. Schollmeyer ◽  
A. Zippelius ◽  
T. Salditt

2019 ◽  
Vol 19 (3) ◽  
pp. 1970006 ◽  
Author(s):  
Kenjiro Yazawa ◽  
Ali D. Malay ◽  
Hiroyasu Masunaga ◽  
Keiji Numata

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3596
Author(s):  
Zaroug Jaleel ◽  
Shun Zhou ◽  
Zaira Martín-Moldes ◽  
Lauren M. Baugh ◽  
Jonathan Yeh ◽  
...  

The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.


2021 ◽  
Vol 893 ◽  
pp. 31-35
Author(s):  
Jin Lian Hu ◽  
Yuan Zhang Jiang ◽  
Lin Gu

Spiders silks have extraordinary strength and toughness simultaneously, thus has become dreamed materials by scientists and industries. Although there have been tremendous attempts to prepare fibers from genetically manufacture spider silk proteins, however, it has been still a huge challenge because of tedious procedure and high cost. Here, a facile spider-silk-mimicking strategy is reported for preparing highly scratchable polymers and supertough fibers from chemical synthesis route. Polymer films with high extensibility (>1200%) and supertough fibers (~387 MJ m-3) are achieved by introducing polypeptides with β-sheet and α-helical structure in polyureathane/urea polymers. Notabley,the toughness of the fiber is more than twice the reported value of a normal spider dragline silk, and comparable with the toughest spider silk, aciniform silk of Argiope trifasciata.


2008 ◽  
Vol 47-50 ◽  
pp. 837-840
Author(s):  
Chia Bin Hung ◽  
Ming Hua Ho ◽  
Sheng Wen Hsiao

In this study, the PDMS (polydimethyl siloxane) membranes with different mechanical strength were prepared and applied for the culture of osteoblastic cells. The osteoblastic phenotypes were then analyzed, including attachment, proliferation and differentiation. Meanwhile, the hydrophilicity of membranes was also adjusted by using plasma treatment. From the preliminarily results, the osteoblastic cells would prefer to attach to the PDMS substrate with higher hardness, which also resulted in a higher cell density in cell proliferation for longer culture times. The above tendency would be only significant on the hydrophilic surface, which revealed that the cell would not well recognize the surface properties on the hydrophobic surface. The results also indicated the osteoblastic differentiation would be affected by the mechanical strength of substrate surfaces. To investigate the mechanism of the mechanical effects on cell behaviors, the protein deposition was analyzed on surfaces with different hardness. The outcome suggested that the protein composition on these surfaces would be changed due to the difference in the mechanical properties.


2021 ◽  
Author(s):  
Nobuaki Kono ◽  
Hiroyuki Nakamura ◽  
Masaru Mori ◽  
Yuki Yoshida ◽  
Rintaro Ohtoshi ◽  
...  

AbstractDragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily, as well as several non-spidroin SpiCE proteins. Artificial synthesis and combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.


Sign in / Sign up

Export Citation Format

Share Document