Self-Organized Meso- and Hybridic Phases of Poly(aspartic acid) and Poly(glutamic amino acid) with Cationic Surfactants (CnTAB,n= 14, 16) and a Silica Source (TEOS)

2007 ◽  
Vol 19 (7) ◽  
pp. 1853-1861 ◽  
Author(s):  
Eleftheria K. Kodona ◽  
Charalambos Alexopoulos ◽  
Eugenia Panou ◽  
Philippos J. Pomonis
Author(s):  
Bernat Pi-Boleda ◽  
Sravani Ramisetty ◽  
Ona Illa ◽  
Vicenç Branchadell ◽  
Rita S. Dias ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3299
Author(s):  
Damian Neubauer ◽  
Maciej Jaśkiewicz ◽  
Marta Bauer ◽  
Agata Olejniczak-Kęder ◽  
Emilia Sikorska ◽  
...  

Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. L-cystine diamide and L-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the L-cystine diamide spacer seem to be less cytotoxic than their L-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1701-1709 ◽  
Author(s):  
Jorge Vieira ◽  
Brian Charlesworth

AbstractThe genomic DNA sequence of a 2.4-kb region of the X-linked developmental gene fused was determined in 15 Drosophila virilis strains. One common replacement polymorphism is observed, where a negatively charged aspartic amino acid is replaced by the noncharged amino acid alanine. This replacement variant is located within the serine/threonine kinase domain of the fused gene and is present in ~50% of the sequences in our sample. Significant linkage disequilibrium is detected around this replacement site, although the fused gene is located in a region of the D. virilis X chromosome that seems to experience normal levels of recombination. In a 600-bp region around the replacement site, all eight alanine sequences are identical; of the six aspartic acid sequences, three are also identical. The occurrence of little or no variation within the aspartic acid and alanine haplotypes, coupled with the presence of several differences between them, is very unlikely under the usual equilibrium neutral model. Our results suggest that the fused alanine haplotypes have recently increased in frequency in the D. virilis population.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


1988 ◽  
Vol 15 (2) ◽  
pp. 81-84 ◽  
Author(s):  
E. M. Ahmed ◽  
J. A. Applewhite

Abstract Florunner peanut seeds contained five trypsin isoinhibitors. Amino acid profiles of the trypsin inhibitors fraction showed high levels of aspartic acid, half-cystine and serine and low levels of histidine and tyrosine. The molecular weight of the inhibitor was 8.3 KDa. The presence of multiforms of this inhibitor, its low molecular weight and the high amount of half-cystine indicate that peanut trypsin inhibitor is of the Bowman-Birk type.


2000 ◽  
Vol 182 (1) ◽  
pp. 221-224 ◽  
Author(s):  
Christina Wilson Bowers ◽  
Andrea McCracken ◽  
Alicia J. Dombroski

ABSTRACT Amino acid substitutions in Escherichia coliς70 were generated and characterized in an analysis of the role of region 1.1 in transcription initiation. Several acidic and conserved residues are tolerant of substitution. However, replacement of aspartic acid 61 with alanine results in inactivity caused by structural and functional thermolability.


1980 ◽  
Vol 187 (3) ◽  
pp. 875-883 ◽  
Author(s):  
D R Thatcher

The sequence of three alcohol dehydrogenase alleloenzymes from the fruitfly Drosophila melanogaster has been determined by the sequencing of peptides produced by trypsin, chymotrypsin, thermolysin, pepsin and Staphylococcus aureus-V8-proteinase digestion. The amino acid sequence shows no obvious homology with the published sequences of the horse liver and yeast enzymes, and secondary structure prediction suggests that the nucleotide-binding domain is located in the N-terminal half of the molecule. The amino acid substitutions between AdhN-11 (a point mutation of AdhF), AdhS and AdhUF alleloenzymes were identified. AdhN-11 alcohol dehydrogenase differed from the other two by a glycine-14-(AdhS and AdhUF)-to-aspartic acid substitution, the AdhS enzyme from AdhN-11 and AdhUF enzymes by a threonine-192-(AdhN-11 and AdhUF)-to-lysine (AdhS) substitution and the AdhUF enzyme was found to differ by an alanine-45-(AdhS and AdhN-11)-to-aspartic acid (AdhUF) charge substitution and a ‘silent’ asparagine-8-(AdhS and AdhN-11)-to-alanine (AdhUF) substitution. Detailed sequence evidence has been deposited as Supplementary Publication SUP 50107 (36 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1978) 169, 5.


Sign in / Sign up

Export Citation Format

Share Document