scholarly journals Response Surface Methodology Optimization of Methylene Blue Removal by Activated Carbon Derived from Foxtail Palm Tree Empty Fruit Bunch

2021 ◽  
Vol 4 (1) ◽  
pp. 25-30
Author(s):  
Farah Amni Daud ◽  
Norhisyam Ismail ◽  
Rozidaini Mohd Ghazi

The release of dyes in form of wastewater causes serious environmental problems such as retards photosynthesis, inhibit growth of aquatic biota by blocking out sunlight and utilizing dissolved oxygen. In this study, activated carbon derived from foxtail palm (Wodyetia bifurcata) empty fruit bunch (EFB) was used as an adsorbent to remove methylene blue in aqueous solution. The preparation process of activated carbon consisted of H2SO4 impregnation followed by carbonization at 300ºC for 24 hours. The optimization adsorption process was carried out using Response Surface Methodology (RSM) via Box-Behnken design. Three important operating variables namely dye concentration, contact time and adsorbent dosage were studied. The optimum conditions obtained were 100 ppm of methylene blue, 13 h of contact time and 2 g of activated carbon with the highest percentage of methylene blue removal of 99.9%. Based on the study, activated carbon derived from foxtail palm EFB showed good potential as an adsorbing agent.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4430
Author(s):  
Nor Hakimin Abdullah ◽  
Mazlan Mohamed ◽  
Norshahidatul Akmar Mohd Shohaimi ◽  
Azwan Mat Lazim ◽  
Ahmad Zamani Abdul Halim ◽  
...  

The presence of organic dyes from industrial wastewater can cause pollution and exacerbate environmental problems; therefore, in the present work, activated carbon was synthesized from locally available oil palm trunk (OPT) biomass as a low-cost adsorbent to remove synthetic dye from aqueous media. The physical properties of the synthesized oil palm trunk activated carbon (OPTAC) were analyzed by SEM, FTIR-ATR, and XRD. The concurrent effects of the process variables (adsorbent dosage (g), methylene blue (MB) concentration (mg/L), and contact time (h)) on the MB removal percentage from aqueous solution were studied using a three-factor three-level Box–Behnken design (BBD) of response surface methodology (RSM), followed by the optimization of MB adsorption using OPTAC as the adsorbent. Based on the results of the analysis of variance (ANOVA) for the three parameters considered, adsorbent dosage (X1) is the most crucial parameter, with an F-value of 1857.43, followed by MB concentration (X2) and contact time (X3) with the F-values of 95.60 and 29.48, respectively. Furthermore, the highest MB removal efficiency of 97.9% was achieved at the optimum X1, X2, and X3 of 1.5 g, 200 mg/L, and 2 h, respectively.


Author(s):  
Negar Jafari ◽  
Afshin Ebrahimi ◽  
Karim Ebrahimpour ◽  
Ali Abdolahnejad

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, was used for photodegradation of MC-LR under ultraviolet light (UV). The Response Surface Methodology was applied to investigate the effects of operating variables such as pH (A), contact time (B), and catalyst dose (B) on the removal of MC-LR. The MC-LR concentration was measured by high-performance liquid chromatography (HPLC). Results: The results showed that single variables such as A, B, and C had significant effects on MC-LR removal (pvalue < 0.05). In other words, increase of the contact time and catalyst dose had a positive effect on enhancing the removal efficiency of MC-LR, but the effect of pH was negative. The analysis of variance showed that BC, A2, and C2 variables had a significant effect on the MC-LR removal (pvalue < 0.05). Finally, the maximum removal efficiency of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes, and catalyst dose = 1 g/l. Conclusion: According to the findings, TiO2, as a photocatalyst, had an appropriate effect on degradation of the MC-LR.


2021 ◽  
Vol 17 (6) ◽  
pp. 768-775
Author(s):  
Fadina Amran ◽  
Nur Fatiah Zainuddin ◽  
Muhammad Abbas Ahmad Zaini

The present work was aimed at evaluating the performance of two-stage adsorber for methylene blue removal by coconut shell activated carbon in minimizing the adsorbent mass and contact time. The Langmuir constants were used to evaluate the optimum mass, while the pseudo-second-order constants for contact time. Results show that the adsorbent mass can only be minimized by 0.01 % due to the high adsorbent affinity towards methylene blue, while the contact time has been optimized to 12.2 min at the studied conditions. The effect of adsorbent affinity in two-stage adsorber was analyzed to shed some light about its importance in the design of two-stage adsorber. The performance evaluation was also discussed to bring insight into wastewater treatment applications.


2021 ◽  
Vol 12 (4) ◽  
pp. 4567-4583

Tunics corm saffron (TCS) is a low-cost adsorbent that removes methylene blue (MB) from an aqueous solution. The TCS was characterized using FTIR and SEM analysis. The influence of MB adsorption variables such as TCS dose (0.4–2.4 g L−1), contact time (0–120 min), MB dye concentration (100–500 mg L−1) was optimized Box–Behnken design (BBD) combined with response surface methodology (RSM) modeling. All three variables among the main parameters significantly affected the removal efficiency by applying the quadratic regression analysis. The results showed that the predicted values for MB adsorption were close to the experimental values and were in good agreement. Besides, the r2 value (r2=0.970) indicates that the regression can predict response for the adsorption process in the studied range. The optimum BBD-RSM for MB removal of 89.48 % was recorded at a TCS dose of 1.78 g L−1, contact time of 56 min, MB dye concentration of 176 mg L–1 at solution pH of 5.4 temperature 21 °C. Excellent regeneration of TCS to remove MB in sixth consecutive adsorption-desorption cycles. This work highlights that TCS offers tremendous potential as a low-cost for organic dyes removal from wastewaters.


Sign in / Sign up

Export Citation Format

Share Document