Prediction of the Effects of Ethanol-Diesel Fuel Blends on Diesel Engine Performance Characteristics, Combustion, Exhaust Emissions, and Cost

2009 ◽  
Vol 23 (3) ◽  
pp. 1707-1717 ◽  
Author(s):  
Z. Şahin ◽  
O. Durgun
2018 ◽  
Vol 25 (1) ◽  
pp. 108-120 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas ◽  
Jacek Rudnicki ◽  
Ryszard Zadrąg

Abstract The article deals with the effects made by using various n-butanol-diesel fuel blends on the combustion history, engine performance and exhaust emissions of a turbocharged four-stroke, four-cylinder, CRDI 1154HP (85 kW) diesel engine. At first, load characteristics were taken when running an engine with normal diesel fuel (DF) to have ‘baseline’ parameters at the two ranges of speed of 1800 and 2500 rpm. Four a fossil diesel (class 1) and normal butanol (n-butanol) fuel blends possessing 1 wt%, 2 wt%, 3 wt%, and 4 wt% (by mass) of n-butanol-bound oxygen fractions were prepared by pouring 4.65 wt% (BD1), 9.30 wt% (BD2), 13.95 wt% (BD3), and 18.65 wt% (BD4) n-butanol to diesel fuel. Then, load characteristics were taken when an engine with n-butanol-oxygenated fuel blends at the same speeds. Analysis of the changes occurred in the autoignition delay, combustion history, the cycle-to-cycle variation, engine efficiency, smoke, and exhaust emissions NOx, CO, THC obtained with purposely designed fuel blends was performed on comparative bases with the corresponding values measured with ‘baseline’ diesel fuel to reveal the potential developing trends.


Author(s):  
Roussos G. Papagiannakis ◽  
Elias A. Yfantis ◽  
Dimitrios T. Hountalas ◽  
Theodoros C. Zannis

Reduction of exhaust emissions is a major research task in diesel engine development in view of increasing concern regarding environmental protection and stringent exhaust gas regulations. Simultaneous reduction of NOx emissions and particulate matter is quite difficult due to the soot/NOx trade-off and is often accompanied by fuel consumption penalties. Towards this aim, automotive engineers have proposed various solutions, one of which is the use of alternative gaseous fuels as a supplement for the commercial liquid diesel fuel. This type of engine, which operates fuelled simultaneously with conventional diesel oil and gaseous fuel, is called “dual fuel” diesel engine. Among alternative gaseous fuels, natural gas is considered to be quite promising due to its low cost and its higher auto-ignition temperature compared to other gaseous fuels facilitating thus its use on existing diesel engines. Previous research studies revealed that natural gas/diesel engine operation results in deterioration of brake engine efficiency, CO and HC emissions compared to conventional diesel fuel operation. In attempt to curtail these negative effects, various theoretical and experimental studies were carried out examining the influence of various parameters such as pilot fuel quantity, diesel fuel injection timing advance and intake charge conditions on “dual fuel” engine performance characteristics and pollutant emissions. However, there are more to know about the proper combination of these engine parameters to attain the optimum results regarding reduction of CO and HC emissions without further deteriorating, if not improving, brake engine efficiency. Hence, in the present study, a theoretical investigation is conducted using an engine simulation model to examine the effect of the aforementioned parameters on performance and exhaust emissions of a natural gas/diesel engine. Predictions are produced for a high-speed natural gas/diesel engine performance characteristics and NO, CO and Soot emissions at diverse engine speeds and loads using a comprehensive two-zone combustion model. The main objective of this comparative assessment is to elaborate the relative impact of each one of the above mentioned parameters on engine performance characteristics and exhaust emissions. Furthermore, an endeavor is made to determine the optimum combinations of these engine operational parameters. The conclusions of this study may be proven to be considerably valuable for the application of this technology on existing DI diesel engines.


Author(s):  
Roussos G. Papagiannakis ◽  
Theodoros C. Zannis ◽  
Elias A. Yfantis ◽  
Dimitrios T. Hountalas

The simultaneous reduction of nitrogen oxide emissions and particulate matter in a compression ignition environment is quite difficult due to the soot/NOx trade off and it is often accompanied by fuel consumption penalties. Thus, fuel reformulation is also essential for the curtailment of diesel pollutant emissions along with the optimization of combustion-related design factors and exhaust after-treatment equipment. Various solutions have been proposed for improving the combustion process of conventional diesel engines and reducing the exhaust emissions without making serious modifications on the engine, one of which is the use of natural gas as a supplement for the conventional diesel fuel (Dual Fuel Natural Gas/Diesel Engines). Natural gas is considered to be quite promising since its cost is relative lower compared to conventional fuels and it has high auto-ignition temperature compared to other gaseous fuels facilitating thus its use on future and existing fleet of small high speed direct injection diesel engines without serious modifications on their structure. Moreover, natural gas does not generate particulates when burned in engines. The most common natural gas/diesel operating mode is referred to as the Pilot Ignited Natural Gas Diesel Engine (P.I.N.G.D.E). Here, the primary fuel is natural gas that controls the engine power output, while the pilot diesel fuel injected near the end of the compression stroke autoignites and creates ignition sources for the surrounding gaseous fuel mixture to be burned. Previous research studies have shown that the main disadvantage of this dual fuel combustion is its negative impact on engine efficiency compared to the normal diesel operation, while carbon monoxide emissions are also increased. The specific engine operating mode, in comparison with conventional diesel fuel operation, suffers from low brake engine efficiency and high carbon monoxide (CO) emissions. The influence becomes more evident at part load conditions. Intake charge temperature, pilot fuel quantity and injection advance are some of the engine parameters which influence significantly the combustion mechanism inside the combustion chamber of a Pilot Ignited Natural Gas Diesel Engine. In order to be examined the effect of these parameters on performance and exhaust emissions of a natural gas/diesel engine a theoretical investigation has been conducted by using a numerical simulation. In order to be examined the effect of increased air inlet temperature combined with increased pilot fuel quantity and its injection timing on performance and exhaust emissions of a pilot ignited natural gas-diesel engine, a theoretical investigation has been conducted by using a comprehensive two-zone phenomenological model. The results concerning engine performance characteristics and NO, CO and Soot emissions for various engine operating conditions (i.e. load and engine speed), comes from the employment of a comprehensive two-zone phenomenological model which had been applied on a high-speed natural gas/diesel engine. The main objectives of this comparative assessment are to record and to comparatively evaluate the relative impact each one of the above mentioned parameters on engine performance characteristics and emitted pollutants. Furthermore, the present investigation deals with the determining of optimum combinations between the parameters referred before since at high engine load conditions, the simultaneous increase some of the specific parameters may lead in undesirable results about engine performance characteristics. The conclusions of the specific investigation will be extremely valuable for the application of this technology on existing DI diesel engines.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2012 ◽  
Vol 518-523 ◽  
pp. 3263-3266
Author(s):  
Jazair Yahya Wira ◽  
Tan Wee Choon ◽  
Samion Syahrullail ◽  
Noge Hirofumi ◽  
Mazlan Said ◽  
...  

Production of alternative diesel fuel has been increasing drastically in many Asian countries. Since the reduction of petroleum production by Organization of Petroleum Exporting Countries (OPEC), the research on alternative fuel for diesel engine has gain interest. The target of this project is to substitute some percentage usage of conventional diesel fuel with waste substance without compromising on engine performance and exhaust emissions. This study has produced two type of alternative fuels. A test fuel consisting 30% of water into diesel fuel with the existence of additive or emulsifier (span 80) is called as DW Emul. Another test fuel which is named as DHW Emul produced by blending 30% of water into a mixture consisting of 20% of waste hydraulic oil and 80% of diesel fuel with the existence of span 80. The engine performance and exhaust emissions of DW Emul and DHW Emul are measured and has been compared with the conventional diesel fuel. A 600cc single cylinder direct injection diesel engine was used. The experiment was conducted at 1500 rpm with variable engine loads. Results show that DHW Emul and DW Emul has higher brake specific fuel consumption (BSFC). However, by considering the total use of diesel fuel contained in DW Emul, the quantity was lower at all loads. The same goes for DHW Emul at low load but deteriorate at high load which show slightly higher compared with of using 100% conventional diesel fuel. DHW Emul has suppressed CO emission that is usually high of using emulsion fuel to the level similar to conventional diesel fuel. NOx and Smoke emissions for DHW Emul are lower than conventional diesel. The use of DHW Emul can give significant reduction of NOx and Smoke emissions without deterioration of CO emission.


Energy has become a crucial factor for humanity to continue the economic growth and maintain high standard of living especially after industrial revolution. “Fossil fuels are still the main source of energy. But the endless consumption of fossil fuels will bring the reserve to an end in near future. As a result fuel prices are soaring because of diminishing supply than demand. So researchers world over are in constant search of alternate fuels in the last three to four years, aimed at reducing CO2 emissions and global dependency on fossil fuels. The use of vegetable oils as a fuel in diesel engine causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is blending of fuel. In this study, a mix of 5%, 10%,15%, 20%, 25% sesame oil and diesel fuel was used as alternative fuel in a direct injection diesel engine. Diesel engine performance and exhaust emissions were investigated and compared with the diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil diesel fuel are close to the values obtained from diesel fuel and the amount of exhaust emissions are lower than those of diesel fuel. Hence it is seen that mix of sesame oil 20% and 80% diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly” fuel in terms of emission parameters.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


Sign in / Sign up

Export Citation Format

Share Document