Perfluorinated Contaminants in Sediments and Aquatic Organisms Collected from Shallow Water and Tidal Flat Areas of the Ariake Sea, Japan:  Environmental Fate of Perfluorooctane Sulfonate in Aquatic Ecosystems

2006 ◽  
Vol 40 (16) ◽  
pp. 4916-4921 ◽  
Author(s):  
Haruhiko Nakata ◽  
Kurunthachalam Kannan ◽  
Tetsuya Nasu ◽  
Hyeon-Seo Cho ◽  
Ewan Sinclair ◽  
...  
Author(s):  
P. Vered ◽  
V. Bityutsky ◽  
V. Kharchyshyn ◽  
M. Zlochevskiy

Generalized studies of the world scientific literature on the fate and risk assessment of exposure to silver nanoparticles (NPAg) both at the ecosystem level and at the organism level, as well as in the laboratory. It is emphasized that the toxic effect of silver nanoparticles, mechanisms and methods of action of NPAg on the body of aquatic organisms have been sufficiently studied in laboratory practice. However, there are some gaps and discrepancies between the results of laboratory tests and the study of real environmental consequences, and such inconsistencies hinder the development of appropriate effective measures to achieve environmental well-being. To bridge such gaps, this review summarizes how environmental conditions and the physicochemical properties of NPAg influence conflicting conclusions between laboratory and real-world environmental studies. It is emphasized that modern research on the pathways of entry, transformation and bioaccumulation of silver nanoparticles in natural aquatic ecosystems emphasizes the ability of such nanoparticles to penetrate intact physiological barriers, which is extremely dangerous. It is proved that silver nanoparticles have a toxic effect on microorganisms, macrophytes and aquatic organisms. The toxic effects of NPAg cover almost entire aquatic ecosystems. A study by a number of authors on the factors influencing the mobility, bioavailability, toxicity and environmental fate of Ag nanoparticles was analyzed to assess the environmental risk. In addition, this review systematically examines the various toxic effects of silver nanoparticles in the environment and compares these effects with the results obtained in laboratory practice, which is useful for assessing the environmental effects of such compounds. The dangerous chronic effects of low-concentration NPAg (μg/l) on natural aquatic ecosystems over a long period of time (months to several years) have been described in detail. In addition, the prospects for future studies of NPAg toxicity in natural freshwater environments are emphasized. Key words: nanoparticles of the medium (NPAg), ecosystem, laboratory wash, toxicity, aquatic organisms, ecological factors.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Sónia Gomes ◽  
Conceição Fernandes ◽  
Sandra Monteiro ◽  
Edna Cabecinha ◽  
Amílcar Teixeira ◽  
...  

The inappropriate use of antibiotics, one of the causes of the high incidence of antimicrobial-resistant bacteria isolated from aquatic ecosystems, represents a risk for aquatic organisms and the welfare of humans. This study aimed to determine the antimicrobial resistance rates among riverine Aeromonas spp., taken as representative of the autochthonous microbiota, to evaluate the level of antibacterial resistance in the Tua River (Douro basin). The prevalence and degree of antibiotic resistance was examined using motile aeromonads as a potential indicator of antimicrobial susceptibility for the aquatic environment. Water samples were collected from the middle sector of the river, which is most impacted area by several anthropogenic pressures. Water samples were plated on an Aeromonas-selective agar, with and without antibiotics. The activity of 19 antibiotics was studied against 30 isolates of Aeromonas spp. using the standard agar dilution susceptibility test. Antibiotic resistance rates were fosfomycin (FOS) 83.33%, nalidixic acid (NA) 60%, cefotaxime (CTX) 40%, gentamicin (CN) 26.67%, tobramycin (TOB) 26.67%, cotrimoxazole (SXT) 26.67%, chloramphenicol (C) 16.67%, and tetracycline (TE) 13.33%. Some of the nalidixic acid-resistant strains were susceptible to fluoroquinolones. Multiple resistance was also observed (83.33%). The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying antimicrobial resistance (AMR) in aquatic ecosystems. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance because anthropogenic activities frequently impact them. The potential risk of multi- and pan-resistant bacteria transmission between animals and humans should be considered in a “One Health—One World” concept.


2021 ◽  
Vol 195 ◽  
pp. 110881
Author(s):  
Sina Dobaradaran ◽  
Farshid Soleimani ◽  
Razegheh Akhbarizadeh ◽  
Torsten C. Schmidt ◽  
Maryam Marzban ◽  
...  

NanoImpact ◽  
2019 ◽  
Vol 13 ◽  
pp. 1-12 ◽  
Author(s):  
Brian Avant ◽  
Dermont Bouchard ◽  
Xiaojun Chang ◽  
Hsin-Se Hsieh ◽  
Brad Acrey ◽  
...  

OSEANA ◽  
2019 ◽  
Vol 42 (2) ◽  
pp. 12-22
Author(s):  
Triyoni Purbonegoro

FACTORS THAT AFFECTING THE TOXICITY OF POLLUTANTS TO AQUATIC ORGANISMS. There are a large number of pollutants in aquatic environment with various characteristics and factors that can modify and affect the toxicity of pollutants in this environment. The major factors affecting pollutant toxicity include physicochemical properties of pollutants, mode of exposure, time, environmental factors, and biological factors. Moreover, organisms in an aquatic ecosystem are seldom exposed to only single pollutant, and most cases the stress of pollution on aquatic ecosystems is related to the interaction and combined effects of many chemicals. The combined effects may be synergistic or antagonistic, depending on the pollutants and the physiological condition of the organism involved.


2018 ◽  
Vol 176 ◽  
pp. 01003
Author(s):  
Guangyu Zhao ◽  
Elin Malmqvist ◽  
Klas Rydhmer ◽  
Alfred Strand ◽  
Giuseppe Bianco ◽  
...  

We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.


Author(s):  
Mohamad Ali Sanjari Shahrezaei ◽  
Seyed Mohammad-Reza Taheri ◽  
Hesam Nikfazan ◽  
Alexandra Satalov ◽  
Mohsen Moazzami Gudarzi ◽  
...  

Though deemed to be of high importance for the determination of environmental impact of 2D materials upon their release into surface waters, control over the conformational engineering of atomically thin...


Sign in / Sign up

Export Citation Format

Share Document