Long-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon and Organic Aerosol

2015 ◽  
Vol 49 (8) ◽  
pp. 5178-5188 ◽  
Author(s):  
Brian C. McDonald ◽  
Allen H. Goldstein ◽  
Robert A. Harley
2010 ◽  
Vol 10 (5) ◽  
pp. 12133-12184 ◽  
Author(s):  
D. Hirdman ◽  
J. F. Burkhart ◽  
H. Sodemann ◽  
S. Eckhardt ◽  
A. Jefferson ◽  
...  

Abstract. As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport) and building on previous work (Hirdman et al., 2010), this paper studies the long-term trends of both atmospheric transport as well as equivalent black carbon (EBC) and sulphate for the three Arctic stations Alert, Barrow and Zeppelin. We find a general downward trend in the measured EBC concentrations at all three stations, with a decrease of −2.1±0.4 ng m−3 yr−1 (for the years 1989–2008) and −1.4±0.8 ng m−3 yr−1 (2002–2009) at Alert and Zeppelin respectively. The decrease at Barrow is, however, not statistically significant. The measured sulphate concentrations show a decreasing trend at Alert and Zeppelin of −15±3 ng m−3 yr−1 (1985–2006) and −1.3±1.2 ng m−3 yr−1 (1990–2008) respectively, while the trend at Barrow is unclear. To reveal the influence of different source regions on these trends, we used a cluster analysis of the output of the Lagrangian particle dispersion model FLEXPART run backward in time from the measurement stations. We have investigated to what extent variations in the atmospheric circulation, expressed as variations in the frequencies of the transport from four source regions with different emission rates, can explain the long-term trends in EBC and sulphate measured at these stations. We find that the long-term trend in the atmospheric circulation can only explain a minor fraction of the overall downward trend seen in the measurements of EBC (0.3–7.2%) and sulphate (0.3–5.3%) at the Arctic stations. The changes in emissions are dominant in explaining the trends. We find that the highest EBC and sulphate concentrations are associated with transport from Northern Eurasia and decreasing emissions in this region drive the downward trends. Northern Eurasia (cluster: NE, WNE and ENE) is the dominant emission source at all Arctic stations for both EBC and sulphate during most seasons. In wintertime, there are indications that the EBC emissions from the eastern parts of Northern Eurasia (ENE cluster) have increased over the last decade.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Jia Sun ◽  
Markus Hermann ◽  
Ye Yuan ◽  
Wolfram Birmili ◽  
Martine Collaud Coen ◽  
...  

Abstract Background The implementation of emission mitigation policies in Europe over the last two decades has generally improved the air quality, which resulted in lower aerosol particle mass, particle number, and black carbon mass concentration. However, little is known whether the decreasing particle concentrations at a lower-altitude level can be observed in the free troposphere (FT), an important layer of the atmosphere, where aerosol particles have a longer lifetime and may affect climate dynamics. In this study, we used data from two high-Alpine observatories, Zugspitze-Schneefernerhaus (ZSF) and Jungfraujoch (JFJ), to assess the long-term trends on size-resolved particle number concentrations (PNCs) and equivalent black carbon (eBC) mass concentration separated for undisturbed lower FT conditions and under the influence of air from the planetary boundary layer (PBL) from 2009 to 2018. Results The FT and PBL-influenced conditions were segregated for both sites. We found that the FT conditions in cold months were more prevalent than in warm months, while the measured aerosol parameters showed different seasonal patterns for the FT and PBL-influenced conditions. The pollutants in the PBL-influenced condition have a higher chance to be transported to high-altitudes due to the mountainous topography, leading to a higher concentration and more distinct seasonal variation, and vice versa. The long-term trends of the measured aerosol parameters were evaluated and the decreased aerosol concentrations were observed for both FT and PBL-influenced conditions. The observed decreasing trends in eBC concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. The decreased concentrations in the FT condition suggest that the background aerosol concentration in the lower FT over Central Europe has correspondingly decreased. The change of back trajectories in the FT condition at ZSF and JFJ was further evaluated to investigate the other possible drivers for the decreasing trends. Conclusions The background aerosol concentration in the lower FT over Central Europe has significantly decreased during 2009–2018. The implementation of emission mitigation policies is the most decisive factor and the decrease of the regional airmass occurrence over Central Europe also has contributed to the decreasing trends.


2021 ◽  
Author(s):  
Julia Schmale ◽  
Sangeeta Sharma ◽  
Stefano Decesari ◽  
Jakob Pernov ◽  
Andreas Massling ◽  
...  

Abstract. Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through September), when atmospheric transport patterns change, and precipitation is more frequent, local Arctic, i.e. natural sources of aerosols and precursors, play an important role. Over the last decades, significant reductions in anthropogenic emissions have taken place. At the same time a large body of literature shows evidence that the Arctic is undergoing fundamental environmental changes due to climate forcing, leading to enhanced emissions by natural processes that may impact aerosol properties. In this study, we analyze nine aerosol chemical species and four particle optical properties from ten Arctic observatories (Alert, Gruvebadet, Kevo, Pallas, Summit, Thule, Tiksi, Barrow, Villum, Zeppelin) to understand changes in anthropogenic and natural aerosol contributions. Variables include equivalent black carbon, particulate sulfate, nitrate, ammonium, methanesulfonic acid, sodium, iron, calcium and potassium, as well as scattering and absorption coefficients, single scattering albedo and scattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emission reductions still show the Arctic haze phenomenon. Second, long-term trends are studied using the Mann-Kendall Theil-Sen slope method. We find in total 28 significant trends over full station records, i.e. spanning more than a decade, compared to 17 significant decadal trends. The majority of significantly declining trends is from anthropogenic tracers and occurred during the haze period, driven by emission changes between 1990 and 2000. For the summer period, no uniform picture of trends has emerged. Twenty-one percent of trends, i.e. eleven out of 57, are significant, and of those five are positive and six are negative. Negative trends include not only anthropogenic tracers such as equivalent black carbon at Kevo, but also natural indicators such as methanesulfonic acid and non-sea salt calcium at Alert. Positive trends are observed for sulfate at Zeppelin and Gruvebadet. No clear evidence of a significant change in the natural aerosol contribution can be observed yet. However, testing the sensitivity of the Mann-Kendall Theil-Sen method, we find that monotonic changes of around 5 % per year in an aerosol property are needed to detect a significant trend within one decade. This highlights that long-term efforts well beyond a decade are needed to capture smaller changes. It is particularly important to understand the ongoing natural changes in the Arctic, where interannual variability can be high, such as with forest fire emissions and their influence on the aerosol population. To investigate the climate-change induced influence on the aerosol population and the resulting climate feedback, long-term observations of tracers more specific to natural sources are needed, as well as of particle microphysical properties such as size distributions, which can be used to identify changes in particle populations which are not well captured by mass-oriented methods such as bulk chemical composition.


2019 ◽  
Author(s):  
Quanyang Lu ◽  
Benjamin N. Murphy ◽  
Momei Qin ◽  
Peter J. Adams ◽  
Yunliang Zhao ◽  
...  

Abstract. We describe simulations using an updated version of the Community Multiscale Air Quality model version 5.3 (CMAQ v5.3) to investigate the contribution of intermediate volatile organic compounds (IVOCs) to secondary organic aerosol formation (SOA) in Southern California during the CalNex study. We first derive a model-ready parameterization for SOA formation from IVOC emissions from mobile sources. To account for SOA formation from both diesel and gasoline sources, the parameterization has six lumped precursor species that account for differences in both volatility and molecular structure (aromatic versus aliphatic) of unspeciated IVOC emissions. We also implement new mobile source emission profiles that quantify all IVOCs based on direct measurements. The profiles have been released in SPECIATE 5.0. In the Los Angeles region, gasoline sources emit 4 times more non-methane organic gases (NMOG) than diesel sources, but diesel emits roughly 3 times more IVOCs on an absolute basis. When accounting for IVOCs, the model predicts all mobile sources (including on- and off-road gasoline, aircraft and on- and off-road diesel) contribute ~1 μg m−3 of SOA in Pasadena, CA, which corresponds to 12 % of the measured SOA concentrations during CalNex. Adding mobile-source IVOCs increases the predicted SOA concentration by ~ 70 %. Therefore, IVOCs in mobile source emissions contribute almost as much SOA as traditional precursors such as single-ring aromatics. However, addition of these emissions still does not close either the ambient SOA or IVOC mass balance. To explore the potential contribution of other IVOC sources, we perform two exploratory simulations with varying amounts of IVOC emissions from non-mobile sources. To close the mass balance of primary hydrocarbon IVOCs, IVOCs would need to account for 12 % of NMOG emissions from non-mobile sources (or equivalently 30.7 Ton day−1 in Los Angeles-Pasadena region), a value that is well within the reported range of IVOC content from volatile chemical products. To close the SOA mass balance and explain mildly oxygenated IVOCs in Pasadena, an additional 14.8 % of non-mobile source NMOG emissions would need to be IVOCs, but assigning an IVOC-to-NMOG ratio of 26.8 % (or equivalently 68.5 Ton day−1 in Los Angeles-Pasadena region) for non-mobile sources seems unrealistically high. By incorporating the most comprehensive mobile emissions profiles for SVOCs and IVOCs along with experimentally constrained SOA yields from mobile IVOCs, this CMAQ configuration represents the most accurate photochemical model prediction of the contribution of mobile sources to urban and regional ambient OA to date. Our results highlight the important contribution of IVOCs to SOA production in Los Angeles region, but also underscore that other uncertainties must be addressed (multigenerational aging, aqueous chemistry, and vapor wall losses) to close the SOA mass balance. This research also highlights the effectiveness of regulations to reduce mobile source emissions, which have, in turn, increased the relative importance of other sources, such as volatile chemical products.


2014 ◽  
Vol 137 ◽  
pp. 49-57 ◽  
Author(s):  
Tanveer Ahmed ◽  
Vincent A. Dutkiewicz ◽  
A.J. Khan ◽  
Liaquat Husain

2020 ◽  
Vol 20 (7) ◽  
pp. 4313-4332 ◽  
Author(s):  
Quanyang Lu ◽  
Benjamin N. Murphy ◽  
Momei Qin ◽  
Peter J. Adams ◽  
Yunliang Zhao ◽  
...  

Abstract. We describe simulations using an updated version of the Community Multiscale Air Quality model version 5.3 (CMAQ v5.3) to investigate the contribution of intermediate-volatility organic compounds (IVOCs) to secondary organic aerosol (SOA) formation in southern California during the CalNex study. We first derive a model-ready parameterization for SOA formation from IVOC emissions from mobile sources. To account for SOA formation from both diesel and gasoline sources, the parameterization has six lumped precursor species that resolve both volatility and molecular structure (aromatic versus aliphatic). We also implement new mobile-source emission profiles that quantify all IVOCs based on direct measurements. The profiles have been released in SPECIATE 5.0. By incorporating both comprehensive mobile-source emission profiles for semivolatile organic compounds (SVOCs) and IVOCs and experimentally constrained SOA yields, this CMAQ configuration best represents the contribution of mobile sources to urban and regional ambient organic aerosol (OA). In the Los Angeles region, gasoline sources emit 4 times more non-methane organic gases (NMOGs) than diesel sources, but diesel emits roughly 3 times more IVOCs on an absolute basis. The revised model predicts all mobile sources (including on- and off-road gasoline, aircraft, and on- and off-road diesel) contribute ∼1 µg m−3 to the daily peak SOA concentration in Pasadena. This represents a ∼70 % increase in predicted daily peak SOA formation compared to the base version of CMAQ. Therefore, IVOCs in mobile-source emissions contribute almost as much SOA as traditional precursors such as single-ring aromatics. However, accounting for these emissions in CMAQ does not reproduce measurements of either ambient SOA or IVOCs. To investigate the potential contribution of other IVOC sources, we performed two exploratory simulations with varying amounts of IVOC emissions from nonmobile sources. To close the mass balance of primary hydrocarbon IVOCs, IVOCs would need to account for 12 % of NMOG emissions from nonmobile sources (or equivalently 30.7 t d−1 in the Los Angeles–Pasadena region), a value that is well within the reported range of IVOC content from volatile chemical products. To close the SOA mass balance and also explain the mildly oxygenated IVOCs in Pasadena, an additional 14.8 % of nonmobile-source NMOG emissions would need to be IVOCs (assuming SOA yields from the mobile IVOCs apply to nonmobile IVOCs). However, an IVOC-to-NMOG ratio of 26.8 % (or equivalently 68.5 t d−1 in the Los Angeles–Pasadena region) for nonmobile sources is likely unrealistically high. Our results highlight the important contribution of IVOCs to SOA production in the Los Angeles region but underscore that other uncertainties must be addressed (multigenerational aging, aqueous chemistry and vapor wall losses) to close the SOA mass balance. This research also highlights the effectiveness of regulations to reduce mobile-source emissions, which have in turn increased the relative importance of other sources, such as volatile chemical products.


2010 ◽  
Vol 10 (19) ◽  
pp. 9351-9368 ◽  
Author(s):  
D. Hirdman ◽  
J. F. Burkhart ◽  
H. Sodemann ◽  
S. Eckhardt ◽  
A. Jefferson ◽  
...  

Abstract. As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport) and building on previous work (Hirdman et al., 2010), this paper studies the long-term trends of both atmospheric transport as well as equivalent black carbon (EBC) and sulphate for the three Arctic stations Alert, Barrow and Zeppelin. We find a general downward trend in the measured EBC concentrations at all three stations, with a decrease of −2.1±0.4 ng m−3 yr−1 (for the years 1989–2008) and −1.4±0.8 ng m−3 yr−1 (2002–2009) at Alert and Zeppelin respectively. The decrease at Barrow is, however, not statistically significant. The measured sulphate concentrations show a decreasing trend at Alert and Zeppelin of −15±3 ng m−3 yr−1 (1985–2006) and −1.3±1.2 ng m−3 yr−1 (1990–2008) respectively, while there is no trend detectable at Barrow. To reveal the contribution of different source regions on these trends, we used a cluster analysis of the output of the Lagrangian particle dispersion model FLEXPART run backward in time from the measurement stations. We have investigated to what extent variations in the atmospheric circulation, expressed as variations in the frequencies of the transport from four source regions with different emission rates, can explain the long-term trends in EBC and sulphate measured at these stations. We find that the long-term trend in the atmospheric circulation can only explain a minor fraction of the overall downward trend seen in the measurements of EBC (0.3–7.2%) and sulphate (0.3–5.3%) at the Arctic stations. The changes in emissions are dominant in explaining the trends. We find that the highest EBC and sulphate concentrations are associated with transport from Northern Eurasia and decreasing emissions in this region drive the downward trends. Northern Eurasia (cluster: NE, WNE and ENE) is the dominant emission source at all Arctic stations for both EBC and sulphate during most seasons. In wintertime, there are indications that the EBC emissions from the eastern parts of Northern Eurasia (ENE cluster) have increased over the last decade.


Sign in / Sign up

Export Citation Format

Share Document