The Nature of Solid-State N−H···O/O−H···N Tautomeric Competition in Resonant Systems. Intramolecular Proton Transfer in Low-Barrier Hydrogen Bonds Formed by the ···OC−CN−NH··· ⇄ ···HO−CC−NN··· Ketohydrazone−Azoenol System. A Variable-Temperature X-ray Crystallographic and DFT Computational Study

2002 ◽  
Vol 124 (45) ◽  
pp. 13554-13567 ◽  
Author(s):  
Paola Gilli ◽  
Valerio Bertolasi ◽  
Loretta Pretto ◽  
Antonín Lyčka ◽  
Gastone Gilli
2006 ◽  
Vol 62 (7) ◽  
pp. o3046-o3048 ◽  
Author(s):  
Ashley T Hulme ◽  
Philippe Fernandes ◽  
Alastair Florence ◽  
Andrea Johnston ◽  
Kenneth Shankland

A polycrystalline sample of a new polymorph of the title compound, C8H11NO2, was produced during a variable-temperature X-ray powder diffraction study. The crystal structure was solved at 1.67 Å resolution by simulated annealing from laboratory powder data collected at 250 K. Subsequent Rietveld refinement yielded an R wp of 0.070 to 1.54 Å resolution. The structure contains two molecules in the asymmetric unit, which form a C 2 2(8) chain motif via N—H...O hydrogen bonds.


2016 ◽  
Vol 4 (16) ◽  
pp. 3599-3606 ◽  
Author(s):  
Toshiki Mutai ◽  
Tatsuya Ohkawa ◽  
Hideaki Shono ◽  
Koji Araki

The color of ESIPT luminescence of HPIP is tuned in a wide range by the introduction of aryl group(s), and thus a series of PIPs showing blue to red emission is realized.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4404
Author(s):  
Shengyang Guan ◽  
David C. Mayer ◽  
Christian Jandl ◽  
Sebastian J. Weishäupl ◽  
Angela Casini ◽  
...  

A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest congener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate exhibiting remarkably short intermolecular Au⋯Au distances (3.2190(7) Å). This goes along with a dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations, indicates that the dimerization is generally driven by attractive aurophilic interactions, which are commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously been reported to be emissive in the solid-state, we conducted a thorough photophysical study combined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the photophysically active phase of the bulk material. Interestingly, all investigated powder samples accessed via different preparation methods can be assigned to the pristine solvent-free crystal structure, showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state material was investigated by means of variable-temperature PXRD, ruling out a significant phase transition being responsible for the drastic change of the emission properties (hypsochromic shift from 710 nm to 510 nm) when lowering the temperature down to 77 K.


2021 ◽  
Vol 33 (2) ◽  
pp. 359-366
Author(s):  
Habibar Chowdhury ◽  
Chandan Adhikary

Two copper(II) azido complexes of the types mononuclear [Cu(TMEDA)2(N3)2] (1) and dinuclear [Cu(TMEDA)(μ1,1-N3)(N3)]2 (2) [TMEDA = trimethylenediamine; N3 – = azide ion] have been synthesized and characterized. X-ray structural analysis revealed that each copper(II) center in complex 1 adopts a distorted octahedron geometry with a CuN6 chromophore ligated through four N atoms of two different symmetrical TMEDA ligands as bidentate chelator and two N atoms of two terminal azides. In complex 2, each copper(II) center adopts a distorted square pyramidal geometry with a CuN5 chromophore ligated through two N atoms of TMEDA as bidentate chelator and two N atoms of two different azides as μ1,1-N3 bridging mode and one N atom of terminal azide ion. The two copper centers are connected through double μ1,1-N3 bridges affording a dinuclear structure with Cu···Cu separation 3.327(2) Å. In crystalline state, mononuclear units in complex 1 are associated through intermolecular N-H···N and C-H···N hydrogen bonds to form a 2D sheet structure viewed along crystallographic b-axis, whereas dinuclear entities in complex 2 are propagated through intermolecular N-H···N and C-H···N hydrogen bonds to form a 3D network structure viewed along crystallographic a-axis. The Variable-temperature magnetic susceptibility measurement evidenced a dominant antiferromagnetic interaction between the metal centers through μ1,1-azide bridges in complex 2 with J = − 0.40 cm-1. The antibacterial activities of the complexes have also been studied.


2020 ◽  
Author(s):  
Dominik Göbel ◽  
Daniel Duvinage ◽  
Tim Stauch ◽  
Boris Nachtsheim

Herein, we present minimalistic single-benzene, excited-state intramolecular proton transfer (ESIPT) based fluorophores as powerful solid state emitters. The very simple synthesis gave access to all four regioisomers of nitrile-substituted 2(oxazolinyl)phenols (MW = 216.1). In respect of their emission properties they can be divided into aggregation-induced emission enhancement (AIEE) luminophores (1-CN and 2-CN), dual state emission (DSE) emitters (3-CN) and aggregation-caused quenching (ACQ) fluorophores (4‐CN). Remarkably, with compound 1-CN we discovered a minimalistic ESIPT based fluorophore with extremely high quantum yield in the solid state ΦF = 87.3% at λem = 491 nm. Furthermore, quantum yields in solution were determined up to ΦF = 63.0%, combined with Stokes shifts up till 11.300 cm–1. Temperature dependent emission mapping, crystal structure analysis and time-dependent density functional theory (TDDFT) calculations gave deep insight into the origin of the emission properties.<br>


Sign in / Sign up

Export Citation Format

Share Document