Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes

1990 ◽  
Vol 38 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Eugenia M. Castillo ◽  
Benito O. De Lumen ◽  
Pilar S. Reyes ◽  
Helen Z. De Lumen
2017 ◽  
Author(s):  
América Tzitziki González-Rodríguez ◽  
Ismael Cisneros Hernández ◽  
Norma A. Martínez-Gallardo ◽  
Erika Mellado-Mojica ◽  
Mercedes López-Pérez ◽  
...  

AbstractIn this study, water deficit stress (WDS)-tolerance in several cultivars of grain amaranth species (Amaranthus hypochondriacus[Ahypo],A. cruentus[Acru] and A.caudatus[Acau]), in addition toA. hybridus(Ahyb), an ancestral amaranth, was examined. Ahypo was the most WDS-tolerant species, whereas Acau and Ahyb were WDS-sensitive. Data revealed that the differential WDS tolerance observed was multifactorial. It involved increased proline and raffinose (Raf) in leaves and/ or roots. Higher foliar Raf coincided with inducedGalactinol synthase 1(AhGolS1) andRaffinose synthase(AhRafS) expression. Unknown compounds, possibly larger RFOs, also accumulated in leaves of WDS-tolerant amaranths, which had high Raf/ Verbascose ratios. Distinct nonstructural carbohydrate (NSC) accumulation patterns were observed in tolerant species under WDS and recovery, such as: i) high Hex/ Suc ratios in roots coupled to increased cell wall and vacuolar invertase and sucrose synthase activities; ii) a severer depletion of starch reserves; iii) lower NSC content in leaves, and iv) higher basal hexose levels in roots which further increased under WDS. WDS-marker gene expression patterns proposed a link between amaranth’s WDS tolerance and abscisic acid-dependent signaling. Results obtained also suggest thatAhTRE,AhTPS9,AhTPS11,AhGolS1 and AhRafSare reliable gene markers of WDS tolerance in amaranth.HighlightDifferential water deficit stress tolerance in grain amaranths and their ancestor,Amaranthus hybridus, is a multifactorial process involving various biochemical changes and modified expression patterns of key stress-related genes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christina C. Vinson ◽  
Ana P. Z. Mota ◽  
Brenda N. Porto ◽  
Thais N. Oliveira ◽  
Iracyara Sampaio ◽  
...  

Abstract Raffinose family oligosaccharides (RFOs) are implicated in plant regulatory mechanisms of abiotic stresses tolerance and, despite their antinutritional proprieties in grain legumes, little information is available about the enzymes involved in RFO metabolism in Fabaceae species. In the present study, the systematic survey of legume proteins belonging to five key enzymes involved in the metabolism of RFOs (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase, and beta-fructofuranosidase) identified 28 coding-genes in Arachis duranensis and 31 in A. ipaënsis. Their phylogenetic relationships, gene structures, protein domains, and chromosome distribution patterns were also determined. Based on the expression profiling of these genes under water deficit treatments, a galactinol synthase candidate gene (AdGolS3) was identified in A. duranensis. Transgenic Arabidopsis plants overexpressing AdGolS3 exhibited increased levels of raffinose and reduced stress symptoms under drought, osmotic, and salt stresses. Metabolite and expression profiling suggested that AdGolS3 overexpression was associated with fewer metabolic perturbations under drought stress, together with better protection against oxidative damage. Overall, this study enabled the identification of a promising GolS candidate gene for metabolic engineering of sugars to improve abiotic stress tolerance in crops, whilst also contributing to the understanding of RFO metabolism in legume species.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 239 ◽  
Author(s):  
Tzitziki González-Rodríguez ◽  
Ismael Cisneros-Hernández ◽  
Jonathan Acosta Bayona ◽  
Enrique Ramírez-Chavez ◽  
Norma Martínez-Gallardo ◽  
...  

Water deficit stress (WDS)-tolerance in grain amaranths (Amaranthus hypochondriacus, A. cruentus and A. caudatus), and A. hybridus, their presumed shared ancestor, was examined. A. hypochondriacus was the most WDS-tolerant species, a trait that correlated with an enhanced osmotic adjustment (OA), a stronger expression of abscisic acid (ABA) marker genes and a more robust sugar starvation response (SSR). Superior OA was supported by higher basal hexose (Hex) levels and high Hex/sucrose (Suc) ratios in A. hypochondriacus roots, which were further increased during WDS. This coincided with increased invertase, amylase and sucrose synthase activities and a strong depletion of the starch reserves in leaves and roots. The OA was complemented by the higher accumulation of proline, raffinose, and other probable raffinose-family oligosaccharides of unknown structure in leaves and/or roots. The latter coincided with a stronger expression of Galactinol synthase 1 and Raffinose synthase in leaves. Increased SnRK1 activity and expression levels of the class II AhTPS9 and AhTPS11 trehalose phosphate synthase genes, recognized as part of the SSR network in Arabidopsis, were induced in roots of stressed A. hypochondriacus. It is concluded that these physiological modifications improved WDS in A. hypochondriacus by raising its water use efficiency.


1987 ◽  
Vol 83 (1) ◽  
pp. 185-189 ◽  
Author(s):  
David M. Saravitz ◽  
David M. Pharr ◽  
Thomas E. Carter

2011 ◽  
Vol 75 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Lesław B. Lahuta

Changes in the accumulation of two types of α-D-galactosides: raffinose family oligosaccharides and galactosyl pinitols were compared with changes in the activities of galactosyltransferases during winter vetch (<em>Vicia villosa</em> Roth.) seed development and maturation. Occurrence of galactinol and raffinose in young seeds and changes in activities of galactinol synthase and raffinose synthase during seed development indicated that formation of raffinose oligosaccharides (RFOs) preceded synthesis of galactopinitols. Although transfer of galactose residues into raffinose oligosaccharides increased as seeds were maturing, at late stages of seed maturation the accumulation of galactopinitols was preferred to that of RFOs. In the present study, activities of enzymes transferring galactose moieties from galactinol to D-pinitol forming galactopinitol A, and further transfer of galactose moieties from galactinol to mono- and di-galactopinitol A were detected throughout seed development and maturation. This is a new observation, indicating biological potential of winter vetch seeds to synthesize mono-, di- and tri-galactosides of D-pinitol in a pathway similar to RFOs. The pattern of changes in activities of stachyose synthase and enzymes synthesizing galactopinitols (named galactopinitol A synthase and ciceritol synthase) suggests that formation of stachyose, mono- and di-galactopinitol A (ciceritol) is catalyzed by one enzyme. High correlation between activities of verbascose synthase and enzyme catalyzing synthesis of tri-galactopinitol A from galactinol and ciceritol (named tri-galactopinitol A synthase) also suggests that biosynthesis of both types of tri-galactosides was catalyzed by one enzyme, but distinct from stachyose synthase. Changes in concentrations of galactosyl acceptors (sucrose and D-pinitol) can be a factor which regulates splitting of galactose moieties between both types of galactosides in winter vetch seeds.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Chaoyu Tian ◽  
Jiangang Yang ◽  
Yan Zeng ◽  
Tong Zhang ◽  
Yingbiao Zhou ◽  
...  

ABSTRACT Herein, we present a biocatalytic method to produce raffinose and stachyose using sucrose as the substrate. An in vitro multienzyme system was developed using five enzymes, namely, sucrose synthase (SUS), UDP-glucose 4-epimerase (GalE), galactinol synthase (GS), raffinose synthase (RS), and stachyose synthase (STS), and two intermedia, namely, UDP and inositol, which can be recycled. This reaction system produced 11.1 mM raffinose using purified enzymes under optimal reaction conditions and substrate concentrations. Thereafter, a stepwise cascade reaction strategy was employed to circumvent the instability of RS and STS in this system, and a 4.2-fold increase in raffinose production was observed. The enzymatic cascade reactions were then conducted using cell extracts to avoid the need for enzyme purification and supplementation with UDP. Such modification further increased raffinose production to 86.6 mM and enabled the synthesis of 61.1 mM stachyose. The UDP turnover number reached 337. Finally, inositol in the reaction system was recycled five times, and 255.8 mM raffinose (128.9 g/liter) was obtained. IMPORTANCE Soybean oligosaccharides (SBOS) have elicited considerable attention because of their potential applications in the pharmaceutical, cosmetics, and food industries. This study demonstrates an alternative method to produce raffinose and stachyose, which are the major bioactive components of SBOS, from sucrose via an in vitro enzyme system. High concentrations of galactinol, raffinose, and stachyose were synthesized with the aid of a stepwise cascade reaction process, which can successfully address the issue of mismatched enzyme characteristics of an in vitro metabolic engineering platform. The biocatalytic approach presented in this work may enable the synthesis of other valuable galactosyl oligosaccharides, such as verbascose and higher homologs, which are difficult to obtain through plant extraction.


2014 ◽  
Vol 171 (14) ◽  
pp. 1306-1314 ◽  
Author(s):  
Lesław B. Lahuta ◽  
Wioletta E. Pluskota ◽  
Joanna Stelmaszewska ◽  
Joanna Szablińska

Sign in / Sign up

Export Citation Format

Share Document