scholarly journals Biosynthesis of raffinose family oligosaccharides and galactosyl pinitols in developing and maturing seeds of winter vetch (Vicia vlllosa Roth.)

2011 ◽  
Vol 75 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Lesław B. Lahuta

Changes in the accumulation of two types of α-D-galactosides: raffinose family oligosaccharides and galactosyl pinitols were compared with changes in the activities of galactosyltransferases during winter vetch (<em>Vicia villosa</em> Roth.) seed development and maturation. Occurrence of galactinol and raffinose in young seeds and changes in activities of galactinol synthase and raffinose synthase during seed development indicated that formation of raffinose oligosaccharides (RFOs) preceded synthesis of galactopinitols. Although transfer of galactose residues into raffinose oligosaccharides increased as seeds were maturing, at late stages of seed maturation the accumulation of galactopinitols was preferred to that of RFOs. In the present study, activities of enzymes transferring galactose moieties from galactinol to D-pinitol forming galactopinitol A, and further transfer of galactose moieties from galactinol to mono- and di-galactopinitol A were detected throughout seed development and maturation. This is a new observation, indicating biological potential of winter vetch seeds to synthesize mono-, di- and tri-galactosides of D-pinitol in a pathway similar to RFOs. The pattern of changes in activities of stachyose synthase and enzymes synthesizing galactopinitols (named galactopinitol A synthase and ciceritol synthase) suggests that formation of stachyose, mono- and di-galactopinitol A (ciceritol) is catalyzed by one enzyme. High correlation between activities of verbascose synthase and enzyme catalyzing synthesis of tri-galactopinitol A from galactinol and ciceritol (named tri-galactopinitol A synthase) also suggests that biosynthesis of both types of tri-galactosides was catalyzed by one enzyme, but distinct from stachyose synthase. Changes in concentrations of galactosyl acceptors (sucrose and D-pinitol) can be a factor which regulates splitting of galactose moieties between both types of galactosides in winter vetch seeds.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1465
Author(s):  
Ramon de Koning ◽  
Raphaël Kiekens ◽  
Mary Esther Muyoka Toili ◽  
Geert Angenon

Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christina C. Vinson ◽  
Ana P. Z. Mota ◽  
Brenda N. Porto ◽  
Thais N. Oliveira ◽  
Iracyara Sampaio ◽  
...  

Abstract Raffinose family oligosaccharides (RFOs) are implicated in plant regulatory mechanisms of abiotic stresses tolerance and, despite their antinutritional proprieties in grain legumes, little information is available about the enzymes involved in RFO metabolism in Fabaceae species. In the present study, the systematic survey of legume proteins belonging to five key enzymes involved in the metabolism of RFOs (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase, and beta-fructofuranosidase) identified 28 coding-genes in Arachis duranensis and 31 in A. ipaënsis. Their phylogenetic relationships, gene structures, protein domains, and chromosome distribution patterns were also determined. Based on the expression profiling of these genes under water deficit treatments, a galactinol synthase candidate gene (AdGolS3) was identified in A. duranensis. Transgenic Arabidopsis plants overexpressing AdGolS3 exhibited increased levels of raffinose and reduced stress symptoms under drought, osmotic, and salt stresses. Metabolite and expression profiling suggested that AdGolS3 overexpression was associated with fewer metabolic perturbations under drought stress, together with better protection against oxidative damage. Overall, this study enabled the identification of a promising GolS candidate gene for metabolic engineering of sugars to improve abiotic stress tolerance in crops, whilst also contributing to the understanding of RFO metabolism in legume species.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 239 ◽  
Author(s):  
Tzitziki González-Rodríguez ◽  
Ismael Cisneros-Hernández ◽  
Jonathan Acosta Bayona ◽  
Enrique Ramírez-Chavez ◽  
Norma Martínez-Gallardo ◽  
...  

Water deficit stress (WDS)-tolerance in grain amaranths (Amaranthus hypochondriacus, A. cruentus and A. caudatus), and A. hybridus, their presumed shared ancestor, was examined. A. hypochondriacus was the most WDS-tolerant species, a trait that correlated with an enhanced osmotic adjustment (OA), a stronger expression of abscisic acid (ABA) marker genes and a more robust sugar starvation response (SSR). Superior OA was supported by higher basal hexose (Hex) levels and high Hex/sucrose (Suc) ratios in A. hypochondriacus roots, which were further increased during WDS. This coincided with increased invertase, amylase and sucrose synthase activities and a strong depletion of the starch reserves in leaves and roots. The OA was complemented by the higher accumulation of proline, raffinose, and other probable raffinose-family oligosaccharides of unknown structure in leaves and/or roots. The latter coincided with a stronger expression of Galactinol synthase 1 and Raffinose synthase in leaves. Increased SnRK1 activity and expression levels of the class II AhTPS9 and AhTPS11 trehalose phosphate synthase genes, recognized as part of the SSR network in Arabidopsis, were induced in roots of stressed A. hypochondriacus. It is concluded that these physiological modifications improved WDS in A. hypochondriacus by raising its water use efficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingpu Song ◽  
Xin Xie ◽  
Chen Chen ◽  
Jie Shu ◽  
Raj K. Thapa ◽  
...  

AbstractThe endosperm provides nutrients and growth regulators to the embryo during seed development. LEAFY COTYLEDON1 (LEC1) has long been known to be essential for embryo maturation. LEC1 is expressed in both the embryo and the endosperm; however, the functional relevance of the endosperm-expressed LEC1 for seed development is unclear. Here, we provide genetic and transgenic evidence demonstrating that endosperm-expressed LEC1 is necessary and sufficient for embryo maturation. We show that endosperm-synthesized LEC1 is capable of orchestrating full seed maturation in the absence of embryo-expressed LEC1. Inversely, without LEC1 expression in the endosperm, embryo development arrests even in the presence of functional LEC1 alleles in the embryo. We further reveal that LEC1 expression in the endosperm begins at the zygote stage and the LEC1 protein is then trafficked to the embryo to activate processes of seed maturation. Our findings thus establish a key role for endosperm in regulating embryo development.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


2019 ◽  
Author(s):  
Fatemeh Maghuly ◽  
Tamas Deak ◽  
Klemens Vierlinger ◽  
Stephan Pabinger ◽  
Hakim Tafer ◽  
...  

Abstract Background: Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with a high content of oil and protein. To better understand the development of its seeds to improve Jatropha`s agronomic performance, a two-step approach was performed: 1) generation of the entire transcriptome of six different maturation stages of J. curcas seeds using 454-Roche sequencing of a cDNA library, 2) comparison of transcriptional expression levels in six different developmental stages of seeds using a custom Agilent 8x60K oligonucleotide microarray. Results: A total of 793,875 high-quality reads were assembled into 19,841 unique full-length contigs, of which 13,705 could be annotated with Gene Ontology (GO) terms. Microarray data analysis identified 9,111 probes (out of 57,842 probes), which were differentially expressed between the six developmental stages. The expression results were validated for 70 randomly selected putative genes. Result from cluster analyses showed that transcripts related to sucrose, fatty acid, flavonoid, phenylpropanoid, lignin, hormone biosynthesis were over-represented in the early stage, while lipid storage, seed dormancy and maturation in the late stage. Generally, the expression of the most over-represented transcripts decrease in the last stage of seed maturation. Further, expression analyses of different maturation stages of J. curcas seed showed that most changes in transcript abundance occurred between the two last stages, suggesting that the timing of metabolic pathways during seed maturation in J. curcas is in late stages. The co-expression result showed a high degree of connectivity between genes that play essential role in fatty acid biosynthesis and nutrient mobilization. Furthermore, seed development and hormone pathways are significantly well connected. Conclusion: The obtained results revealed DESs regulating important pathways related to seed maturation, which could contribute to understanding the complex regulatory network during seed development. This study provides detailed information on transcription changes during J. curcas seed development and provides a starting point for a genomic survey of seed quality traits. The current results highlighted specific genes and processes relevant to the molecular mechanisms involved in Jatropha seed development, and it is anticipated that this data can be delivered to other Euphorbiaceae species of economic value.


2021 ◽  
Author(s):  
Zhihui Wang ◽  
Liying Yan ◽  
Yuning Chen ◽  
Xin Wang ◽  
Dongxin Huai ◽  
...  

Abstract Seed weight is a major target of peanut breeding as an important component of seed yield. However, relatively little is known about QTLs and candidate genes associated with seed weight in peanut. In this study, three major QTLs on chromosomes A05, B02 and B06 were determined by applying NGS-based QTL-seq approach for a RIL population. These three QTL regions have been successfully narrowed down through newly developed SNP and SSR markers based on traditional QTL mapping. Among these three QTL regions, qSWB06.3 exhibited stable expression with large contribution to phenotypic variance across all environments. Furthermore, RNA-seq were applied for early, middle and late stages of seed development, and differentially expression genes (DEGs) were identified in ubiquitin-proteasome pathway, serine/threonine protein pathway and signal transduction of hormones and transcription factors. Notably, DEGs at early stage were majorly related to regulating cell division, whereas DEGs at middle and late stages were mainly associated with cell expansion during seed development. Through integrating SNP variation, gene expression and functional annotation, candidate genes related to seed weight in qSWB06.3 were predicted and distinct expression pattern of those genes were exhibited using qRT-PCR. In addition, KASP-markers in qSWB06.3 were successfully validated in diverse peanut varieties and the alleles of parent Zhonghua16 in qSWB06.3 was associated with high seed weight. This suggested that qSWB06.3 was reliable and the markers in qSWB06.3 could be deployed in marker-assisted breeding to enhance seed weight. This study provided insights into the understanding of genetic and molecular mechanisms of seed weight in peanut.


2020 ◽  
Vol 42 ◽  
pp. e49895
Author(s):  
Ana Paula de Oliveira Silva ◽  
Isabella Sousa Ribeiro ◽  
Tathiana Elisa Masetto ◽  
Luiz Carlos Ferreira Souza

Determination of seed-maturation indicators enables the identification of the ideal moment for harvest to achieve the best production and conservation potential. Our objective here was to evaluate some physical and physiological changes of crambe (Crambe abyssinica Hochst) seeds as possible indicators of seed maturation. Crambe flowering was monitored in Dourados, Mato Grosso do Sul, Brazil. Plants were tagged, and 13, 22, 26, and 28 days after the initiation of flowering, the seeds were collected and following physical attributes evaluated: length, diameter, total mass, dry matter and water content. Physiological quality of the seeds was assessed using the germination test, by registering the percentage of normal seedlings and dormant seeds, immediately after each harvest, and again after six months of storage. The water-absorption curves were characterized as a function the seed-development stages. All physical attributes were observed to increase because of the accumulation of reserve substances during seed development, except for water content, which gradually decreased from 72.2% at the start of development to 29.5% at maturity. At 28 days after anthesis the germination percentage of crambe seeds at physiological maturity was only 17%, indicating that they became dormant while maturing. However, seed germination rate was 89% after six months of storage, indicating that dormancy was almost fully overcome after this period.


Sign in / Sign up

Export Citation Format

Share Document