Bioassay Guided Isolation and Identification of Anti-inflammatory Active Compounds from the Root of Ficus formosana

2013 ◽  
Vol 61 (46) ◽  
pp. 11008-11015 ◽  
Author(s):  
Guan-Jhong Huang ◽  
Jeng-Shyan Deng ◽  
Shyh-Shyun Huang ◽  
Sheng-Yang Wang ◽  
Yuan-Shiun Chang ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 503
Author(s):  
Györgyi Horváth ◽  
Eszter Csikós ◽  
Eichertné Violetta Andres ◽  
Tímea Bencsik ◽  
Anikó Takátsy ◽  
...  

Melilotus officinalis is known to contain several types of secondary metabolites. In contrast, the carotenoid composition of this medicinal plant has not been investigated, although it may also contribute to the biological activities of the drug, such as anti-inflammatory effects. Therefore, this study focuses on the isolation and identification of carotenoids from Meliloti herba and on the effect of isolated (all-E)-lutein 5,6-epoxide on primary sensory neurons and macrophages involved in nociception, as well as neurogenic and non-neurogenic inflammatory processes. The composition of the plant extracts was analyzed by high performance liquid chromatography (HPLC). The main carotenoid was isolated by column liquid chromatography (CLC) and identified by MS and NMR. The effect of water-soluble lutein 5,6-epoxide-RAMEB (randomly methylated-β-cyclodextrin) was investigated on Ca2+-influx in rat primary sensory neurons induced by the activation of the transient receptor potential ankyrin 1 receptor agonist to mustard-oil and on endotoxin-induced IL-1β release from isolated mouse peritoneal macrophages. (all-E)-Lutein 5,6-epoxide significantly decreased the percent of responsive primary sensory neurons compared to the vehicle-treated stimulated control. Furthermore, endotoxin-evoked IL-1β release from macrophages was significantly decreased by 100 µM lutein 5,6-epoxide compared to the vehicle-treated control. The water-soluble form of lutein 5,6-epoxide-RAMEB decreases the activation of primary sensory neurons and macrophages, which opens perspectives for its analgesic and anti-inflammatory applications.


Molecules ◽  
2015 ◽  
Vol 20 (7) ◽  
pp. 13041-13054 ◽  
Author(s):  
Ji-Yeon Yu ◽  
Jae Ha ◽  
Kyung-Mi Kim ◽  
Young-Suk Jung ◽  
Jae-Chul Jung ◽  
...  

2018 ◽  
Vol 34 (12) ◽  
pp. 1786-1790 ◽  
Author(s):  
Yong-Xiang Wu ◽  
You-Jeong Kim ◽  
Tae-Hyung Kwon ◽  
Chin-Ping Tan ◽  
Kun-Ho Son ◽  
...  

2013 ◽  
Vol 634-638 ◽  
pp. 1225-1228 ◽  
Author(s):  
Fei Zhang ◽  
Hai Wei Ren ◽  
Yong Gang Wang ◽  
Rong Wang ◽  
Jie Sheng

A significant acetylcholinesterase inhibitory activity was observed for the Ethanolic extract from the leaves of Calophyllum polyanthum by using TLC bioautographic method. Further bioassay-guided isolation of this extract using TLC bioautographic method resulted in obtaining a pyranochromanone, apetalic acid (1). The structure of 1 was identified by comparison of it’s spectral characteristics with previous reports. The concentration required for 50% inhibition of 1 was 0.95 mM, determined by a microplate assay. The anti-acetylcholinesterase aity of compound 1 was weak, but it was the first pyranochromanone which have anti-acetyl cholinesterase activity. As a new leading compound, it can be modified and transformed to obtain more potently active compounds.


2021 ◽  
Vol 18 ◽  
Author(s):  
Jagseer Singh ◽  
Pooja A Chawla ◽  
Rohit Bhatia ◽  
Shamsher Singh

: The present work reports synthesis and screening of fifteen 2,5-disubstituted-4-thiazolidinones with different substitutions of varied arylidene groups at imino. The structures of the compounds were confirmed by spectral characterization. The compounds were subjected to in vivo anti-inflammatory and in vitro antioxidant activities. The derivatives possessed remarkable activities quite close to standard drugs used. Unlike conventional non-selective NSAIDs, the synthesized compounds did not contain any acidic group, thereby ensuring a complete cure from ulcers. To further substantiate the claim for safer derivatives, the active compounds were docked against the cyclooxygenase (COX)-2 enzyme. It was found that 4-fluorophenylimino substituent at 2- position and 3-nitro moiety on a 5-benzylidene nucleus of the 4-thiazolidinone derivative fitted in the COX-2 binding pocket. The compounds exhibited remarkable activity in scavenging free radicals, as depicted by the DPPH assay method. The structure-activity relationship was also established in the present work with respect to the nature and position of the substituents. The active compounds were evaluated for drug-like nature under Lipinski’s rule of five, and the toxicity behaviour of active compounds was predicted using ADMETlab software. The compounds have the potential to target degenerative disorders associated with inflammation and the generation of free radicals.


Author(s):  
Seham Salah El-Hawary ◽  
Hala M. EL-Hefnawy ◽  
Samir Mohamed Osman ◽  
Mohamed A. El-Raey ◽  
Fatma Alzahraa Mokhtar ◽  
...  

Background: The plants of high phenolic contents are perfect antioxidant and anti-inflammatory candidates and participate in biological studies as effective agents towards different cancer cell lines. Objective: To investigate the antioxidant, anti-inflammatory, and cytotoxic activities of the hydromethanolic leaf extract of Jasminum multiflorum (Burm. f.) Andrews. (J. multiflorum), and phenolic profiling of the extract. Methods: The antioxidant activity for the extract was estimated using β-Carotene-linoleic and ferric reducing antioxidant power (FRAP) assays. The anti-inflammatory activity was evaluated by histamine release assay. Cytotoxicity of J. multiflorum was performed using a neutral red uptake assay towards breast cancer (MCF-7) and colorectal cancer (HCT 116) cell lines. Phenolic profiling of the leaves was characterized using high performance liquid chromatography coupled to photodiode array detector-mass spectroscopy-mass spectroscopy (HPLC-PDA-MS/MS), and chromatographic isolation and identification of the isolated compounds were performed using spectroscopic and NMR data, and virtual docking was performed to the isolated compounds against HSP90 (HEAT SHOCK PROTEIN 90). Results : At a concentration of 75 µg mL-1, J. multiflorum extract showed high antioxidant power; 68.23±0.35 % inhibition and 60.30±0.60 a TEAC (µmol Trolox g-1) for β-Carotene-linoleic assay and FRAP assay; respectively, and possessed anti-inflammatory activity with IC50 67.2 µg/ml. J. multiflorum showed high cytotoxic activity with IC50 of 24.81 µg/ml and 11.38 µg/ml for MCF-7 and HCT 116 cell lines, respectively. HPLC-PDA-MS/MS analysis tentatively identified 39 compounds; major compounds are secoiridoid glycosides, kaempferol, and quercetin glycosides, in addition to simple phenylethanoid compounds. Isolation of active metabolites was performed and led to the isolation and identification of four compounds. On the basis of docking study using HSP90 legend, kaempferol neohesperidoside showed a high cytotoxic potential supported by a high affinity score towards HSP90 legend protein. Conclusion: Jasminum multiflorum is a good candidate to isolate cytotoxic agents.


Sign in / Sign up

Export Citation Format

Share Document