2,5-disubstituted-4-thiazolidinones: Synthesis, anti-inflammatory, free radical scavenging potentials and structural insights through molecular docking

2021 ◽  
Vol 18 ◽  
Author(s):  
Jagseer Singh ◽  
Pooja A Chawla ◽  
Rohit Bhatia ◽  
Shamsher Singh

: The present work reports synthesis and screening of fifteen 2,5-disubstituted-4-thiazolidinones with different substitutions of varied arylidene groups at imino. The structures of the compounds were confirmed by spectral characterization. The compounds were subjected to in vivo anti-inflammatory and in vitro antioxidant activities. The derivatives possessed remarkable activities quite close to standard drugs used. Unlike conventional non-selective NSAIDs, the synthesized compounds did not contain any acidic group, thereby ensuring a complete cure from ulcers. To further substantiate the claim for safer derivatives, the active compounds were docked against the cyclooxygenase (COX)-2 enzyme. It was found that 4-fluorophenylimino substituent at 2- position and 3-nitro moiety on a 5-benzylidene nucleus of the 4-thiazolidinone derivative fitted in the COX-2 binding pocket. The compounds exhibited remarkable activity in scavenging free radicals, as depicted by the DPPH assay method. The structure-activity relationship was also established in the present work with respect to the nature and position of the substituents. The active compounds were evaluated for drug-like nature under Lipinski’s rule of five, and the toxicity behaviour of active compounds was predicted using ADMETlab software. The compounds have the potential to target degenerative disorders associated with inflammation and the generation of free radicals.

2020 ◽  
Author(s):  
Gervason Moriasi ◽  
Elias Nelson ◽  
Epaphrodite Twahirwa

Abstract Oxidative stress is a critical etiologic factor and driver of inflammatory responses, witnessed in chronic and persistent conditions. The current anti-oxidative stress and anti-inflammatory drugs are associated with detrimental effects, high dependence, high costs, inaccessibility, among other drawbacks; therefore, a need for alternatives is imperative. Despite the remarkable potential of medicinal plants, there are scanty empirical studies on their pharmacologic efficacy. The Phytexponent is an alcoholic polyherbal preparation of Allium sativum, Triticum repens, Echinacea purpurea, Viola tricolor and Matricaria chamomilla. In complementary medicine, the Phytexponent is used to boost immunity, to treat inflammatory disorders, oxidative stress, blood pressure, diabetes, stress/depression, among other conditions. However, there is no sufficient scientific data to support these healing claims. Therefore, in the current study evaluated the in vitro anti-inflammatory, antioxidant activities and qualitative phytochemical composition of the Phytexponent. The in vitro anti-inflammatory activities were evaluated using the inhibition of protein denaturation and the human erythrocyte (HRBC) membrane stabilization techniques. Antioxidant activities were evaluated by the 1,1-diphenyl-picryl-1-hydrazyl (DPPH) radical scavenging-, the hydroxyl radical scavenging- and catalase activities. Qualitative phytochemical screening was performed using standard procedures. The results showed a significantly higher percentage inhibition of heat-induced- and hypotonicity induced HRBC hemolysis by the Phytexponent at concentrations of 50 % and 100 %, compared with the percentage inhibitions of etanercept (p<0.05). No significant differences in percentage inhibitions of protein denaturation were observed among concentrations of 12.5 %,25.0 %,50.0 %,100.0 % of the Phytexponent and etanercept (25 mg/ml) (p˃0.05). Furthermore, the Phytexponent demonstrated high antioxidant activities against the DPPH- (IC50=0.00733%) and the hydroxyl- (IC50 = 0.716 %) radicals in vitro.The Phytexponent recorded significantly higher catalase activities at concentrations of 1 % and 0.1 % than those recorded by ascorbic acid at similar concentrations. Qualitative phytochemical screening revealed the presence of phenols, flavonoids, tannins, among other antioxidant associated phytochemicals. The bioactivities of the Phytexponent reported herein, were attributed to the presence of these phytochemicals. Further studies to establish specific mode(s) through which the Phytexponent exerts in vitro anti-inflammatory and antioxidant effects are encouraged. Moreover, in vivo anti-inflammatory and antioxidant activities should be done to determine the replicability of these findings in vivo. Bioassay-guided isolation of compounds responsible for the reported bioactivities herein should be done.


2020 ◽  
Author(s):  
Gervason Moriasi ◽  
Elias Nelson ◽  
Epaphrodite Twahirwa

Abstract Oxidative stress is a critical etiologic factor and driver of inflammatory responses, witnessed in chronic and persistent conditions. The current anti-oxidative stress and anti-inflammatory drugs are associated with detrimental effects, high dependence, high costs, inaccessibility, among other drawbacks; therefore, a need for alternatives is imperative. Despite the remarkable potential of medicinal plants, there are scanty empirical studies on their pharmacologic efficacy. The Phytexponent is an alcoholic polyherbal preparation of Allium sativum, Triticum repens, Echinacea purpurea, Viola tricolor and Matricaria chamomilla. In complementary medicine, the Phytexponent is used to boost immunity, to treat inflammatory disorders, oxidative stress, blood pressure, diabetes, stress/depression, among other conditions. However, there is no sufficient scientific data to support these healing claims. Therefore, in the current study evaluated the in vitro anti-inflammatory, antioxidant activities and qualitative phytochemical composition of the Phytexponent. The in vitro anti-inflammatory activities were evaluated using the inhibition of protein denaturation and the human erythrocyte (HRBC) membrane stabilization techniques. Antioxidant activities were evaluated by the 1,1-diphenyl-picryl-1-hydrazyl (DPPH) radical scavenging-, the hydroxyl radical scavenging- and catalase activities. Qualitative phytochemical screening was performed using standard procedures. The results showed a significantly higher percentage inhibition of heat-induced- and hypotonicity induced HRBC hemolysis by the Phytexponent at concentrations of 50 % and 100 %, compared with the percentage inhibitions of etanercept (p<0.05). No significant differences in percentage inhibitions of protein denaturation were observed among concentrations of 12.5 %,25.0 %,50.0 %,100.0 % of the Phytexponent and etanercept (25 mg/ml) (p˃0.05). Furthermore, the Phytexponent demonstrated high antioxidant activities against the DPPH- (IC50=0.00733%) and the hydroxyl- (IC50 = 0.716 %) radicals in vitro.The Phytexponent recorded significantly higher catalase activities at concentrations of 1 % and 0.1 % than those recorded by ascorbic acid at similar concentrations. Qualitative phytochemical screening revealed the presence of phenols, flavonoids, tannins, among other antioxidant associated phytochemicals. The bioactivities of the Phytexponent reported herein, were attributed to the presence of these phytochemicals. Further studies to establish specific mode(s) through which the Phytexponent exerts in vitro anti-inflammatory and antioxidant effects are encouraged. Moreover, in vivo anti-inflammatory and antioxidant activities should be done to determine the replicability of these findings in vivo. Bioassay-guided isolation of compounds responsible for the reported bioactivities herein should be done.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601
Author(s):  
Mina Moussaid ◽  
Abd Elaziz Elamrani ◽  
Nourdinne Bourhim ◽  
Mohamed Benaissa

Five ethanol extracts of wild plants from the Casablanca region (Morocco) used in local traditional medicine for the treatment of inflammatory diseases were evaluated for their in vivo topical anti-inflammatory activity (inhibition of carrageenan-induced ear edema in mice) and in vitro antioxidant and antiradical properties (inhibition of linoleic acid oxidation, DPPH radical scavenging). All the extracts showed an anti-inflammatory effect: 300 μg/cm2 provoked edema reductions ranging from 22 to 28%. All the extracts also exerted radical scavenging and/or antioxidant properties, the most active plant being Mentha pulegium L. (Lamiaceae), which contained the highest amount of phenolics (339 mg/g), and flavonoids (16.7 mg/g).


Author(s):  
Abhishek Chatterjee ◽  
Dileep Singh Baghel ◽  
Bimlesh Kumar ◽  
Saurabh Singh ◽  
Narendra Kumar Pandey ◽  
...  

Objective: The aims of the present investigation were to develop the herbal and/or herbomineral formulations of Hinguleswara rasa and to compare their anti-inflammatory and antioxidant activities, in vitro, with that of standard drug samples.Methods: This study was an interventional investigation in three samples: In the first sample, Hinguleswara rasa (HR1) was prepared as per methodology described in Rasatarangini using Shuddha Hingula (10 g), Shuddha Vatsanabha (10 g), and Pippali (10 g). In the second and third sample, respectively, Hinguleswara rasa was prepared by replacing Shuddha Hingula with Kajjali where Kajjali made from Hingulotha parada and Sodhita parada constitutes two varieties of Hinguleswara rasa, i.e. HR2 and HR3. In vitro antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl, and the absorbance was recorded at 517 nm. For evaluating the in vitro anti-inflammatory studies, the inhibition of albumin denaturation technique was performed.Results: The results showed that the formulation of Hinguleswara rasa has shown dose-dependent activity which was observed in 100 μg concentration. HR1, HR2, and HR3 showed 36.11, 17.22, and 16.11% radical scavenging activity.Conclusion: It could be concluded that the changes made in the formulations did not affect the in vitro anti-inflammatory and antioxidant effects of the herbomineral formulations.


Author(s):  
Ganiyu Oboh ◽  
Veronica O. Odubanjo ◽  
Fatai Bello ◽  
Ayokunle O. Ademosun ◽  
Sunday I. Oyeleye ◽  
...  

AbstractAvocado pear (The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of FeThe extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID.The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.


2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100
Author(s):  
Pei-Ling Yen ◽  
Sen-Sung Cheng ◽  
Chia-Cheng Wei ◽  
Huan-You Lin ◽  
Vivian Hsiu-Chuan Liao ◽  
...  

The in vitro and in vivo antioxidant activities and its potential to protect against amyloid-β toxicity of essential oils from Zelkova serrata (Thunb.) Makino were investigated in the model organism Caenorhabditis elegans. The results revealed that the essential oil of Z. serrata heartwood exhibited great radical scavenging activities and high total phenolic content. In vivo assays showed significant inhibition of oxidative damage in wild-type C. elegans under juglone-induced oxidative stress and heat shock. Based on results from both in vitro and in vivo assays, the major compound in essential oil of heartwood, (-)-(1 S, 4 S)-7-hydroxycalamenene (1 S, 4 S-7HC), may contribute significantly to the observed antioxidant activity. Further evidence showed that 1 S, 4 S-7HC significantly delayed the paralysis phenotype in amyloid beta-expressing transgenic C. elegans. These findings suggest that 1 S, 4 S-7HC from the essential oil of Z. serrata heartwood has potential as a source for antioxidant or Alzheimer's disease treatment.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5295
Author(s):  
Xinyu Zhao ◽  
Ruyi Chen ◽  
Yueyue Shi ◽  
Xiaoxi Zhang ◽  
Chongmei Tian ◽  
...  

This study aimed to isolate, prepare and identify the main flavonoids from a standardized Smilax glabra flavonoids extract (SGF) using preparative HPLC, MS, 1H NMR and 13C NMR, determine the contents of these flavonoids using UPLC, then compare their pharmacological activities in vitro. We obtained six flavonoids from SGF: astilbin (18.10%), neoastilbin (11.04%), isoastilbin (5.03%), neoisoastilbin (4.09%), engeletin (2.58%) and (−)-epicatechin (1.77%). The antioxidant activity of six flavonoids were evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS+) radical scavenging activity and ferric reducing antioxidant power (FRAP). In addition, the anti-inflammatory activity of six flavonoids were evaluated by determining the production of cytokines (IL-1β, IL-6), nitric oxide (NO) using enzyme linked immunosorbent assay and the NF-κB p65 expression using Western blotting in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that (−)-epicatechin, astilbin, neoastilbin, isoastilbin and neoisoastilbin had strong antioxidant activities, not only in DPPH and ABTS+ radicals scavenging capacities, but in FRAP system. Furthermore, all the six flavonoids could significantly inhibit the secretion of IL-1β, IL-6, NO (p < 0.01) and the protein expression of NF-κB p-p65 (p < 0.01) in LPS-stimulated RAW264.7 cells. This study preliminarily verified the antioxidant and anti-inflammatory activities of six flavonoids in S. glabra.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Ying Zou ◽  
Min Zhang ◽  
Tingrui Zhang ◽  
Junwen Wu ◽  
Jun Wang ◽  
...  

The flavonoid fraction was obtained from Elsholtiza bodinieri Vaniot (EBV) by ethanol-reflux and liquid-liquid extraction. The total content of flavonoid was 179.55 mg/g, and the purity was 64.6%. Then cynaroside with the purity of 94% was isolated from the fraction by preparative HPLC and characterized by the combined usage of HPLC, ESI-MS, and NMR. The antioxidant activity of cynaroside was determined using 2 complementary methods, namely, 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assay. The anti-inflammatory effect of cynaroside was investigated based on in-vitro and in-vivo experiment. The results showed that cynaroside from EBV scavenged DPPH radical and reduced Fe3+ to Fe2+ effectively, inhibited NO and ROS production in LPS-stimulated RAW264.7 cells and attenuated the inflammation in the mouse model significantly ( p < 0.01), which showed it to be a nutraceutical product in the food industry.


MedChemComm ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 421-430 ◽  
Author(s):  
Priyanka Chandel ◽  
Anoop Kumar ◽  
Nishu Singla ◽  
Anshul Kumar ◽  
Gagandeep Singh ◽  
...  

In the present work, coumarin based pyrazolines (7a–g) have been synthesized and investigated for their in vitro and in vivo anti-inflammatory potential.


Sign in / Sign up

Export Citation Format

Share Document