Highly Aligned Block Copolymer Thin Films by Synergistic Coupling of Static Graphoepitaxy and Dynamic Thermal Annealing Fields

2013 ◽  
Vol 2 (4) ◽  
pp. 346-350 ◽  
Author(s):  
Brian C. Berry ◽  
Gurpreet Singh ◽  
Ho-Cheol Kim ◽  
Alamgir Karim
Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1312 ◽  
Author(s):  
Xiao Cheng ◽  
Alexander Böker ◽  
Larisa Tsarkova

Solvent vapor annealing is as an effective and versatile alternative to thermal annealing to equilibrate and control the assembly of polymer chains in thin films. Here, we present scientific and practical aspects of the solvent vapor annealing method, including the discussion of such factors as non-equilibrium conformational states and chain dynamics in thin films in the presence of solvent. Homopolymer and block copolymer films have been used in model studies to evaluate the robustness and the reproducibility of the solvent vapor processing, as well as to assess polymer-solvent interactions under confinement. Advantages of utilizing a well-controlled solvent vapor environment, including practically interesting regimes of weakly saturated vapor leading to poorly swollen states, are discussed. Special focus is given to dual temperature control over the set-up instrumentation and to the potential of solvo-thermal annealing. The evaluated insights into annealing dynamics derived from the studies on block copolymer films can be applied to improve the processing of thin films of crystalline and conjugated polymers as well as polymer composite in confined geometries.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jia-Wen Hong ◽  
Jung-Hong Chang ◽  
Iris Ching-Ya Chang ◽  
Ya-Sen Sun

For P(S-b-MMA)/PS mixtures with ϕPS = 64%, PL exists in thin films annealed at 230–270 °C. For thick films, thermal annealing at 245–270 °C produces both PL and DG of various fractions. PL becomes the only discernible phase in thick films annealed at 230 °C.


2013 ◽  
Vol 24 (25) ◽  
pp. 255304 ◽  
Author(s):  
Ana Ledo-Suárez ◽  
Cristina Elena Hoppe ◽  
Massimo Lazzari ◽  
M Arturo Lopez Quintela ◽  
Ileana Alicia Zucchi

2013 ◽  
Vol 853 ◽  
pp. 53-56
Author(s):  
Sung Min Park ◽  
Hyung Ju Ahn ◽  
Sang Woo Kim ◽  
Jin Sam Gong ◽  
Du Yeol Ryu

We demonstrate the structural reorganization of microdomain arrays toward the perpendicular orientation of lamellar morphology in high-molecular-weight PS-b-PMMA films using a combinational approach by solvent-vapor and sequential thermal annealing processes. Solvent annealing with a PMMA-selective acetone vapor induced a cylindrical morphology. However, the sequential thermal annealing of block copolymer (BCP) films led to structural reorganization to an equilibrium lamellar morphology, where the lamellar microdomains were oriented to normal to the film surface. This technique suggests an efficient route for directing orientation and structural reorganization of microdomain arrays in the thin films of high-molecular-weight BCP self-assembly.


2003 ◽  
Vol 27 (11) ◽  
pp. 1083-1086 ◽  
Author(s):  
H. Ito ◽  
T. Kusunoki ◽  
H. Saito ◽  
S. Ishio

2020 ◽  
Vol 59 (10) ◽  
pp. 105503
Author(s):  
Wafaa Magdy ◽  
Ayaka Kanai ◽  
F. A. Mahmoud ◽  
E. T. El Shenawy ◽  
S. A. Khairy ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Yu-Chen Chang ◽  
Ying-Chung Chen ◽  
Bing-Rui Li ◽  
Wei-Che Shih ◽  
Jyun-Min Lin ◽  
...  

In this study, piezoelectric zinc oxide (ZnO) thin film was deposited on the Pt/Ti/SiNx/Si substrate to construct the FBAR device. The Pt/Ti multilayers were deposited on SiNx/Si as the bottom electrode and the Al thin film was deposited on the ZnO piezoelectric layer as the top electrode by a DC sputtering system. The ZnO thin film was deposited onto the Pt thin film by a radio frequency (RF) magnetron sputtering system. The cavity on back side for acoustic reflection of the FBAR device was achieved by KOH solution and reactive ion etching (RIE) processes. The crystalline structures and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optimized as-deposited ZnO thin films with preferred (002)-orientation were obtained under the sputtering power of 80 W and sputtering pressure of 20 mTorr. The crystalline characteristics of ZnO thin films and the frequency responses of the FBAR devices can be improved by using the rapid thermal annealing (RTA) process. The optimized annealing temperature and annealing time are 400 °C and 10 min, respectively. Finally, the FBAR devices with structure of Al/ZnO/Pt/Ti/SiNx/Si were fabricated. The frequency responses showed that the return loss of the FBAR device with RTA annealing was improved from −24.07 to −34.66 dB, and the electromechanical coupling coefficient (kt2) was improved from 1.73% to 3.02% with the resonance frequency of around 3.4 GHz.


Sign in / Sign up

Export Citation Format

Share Document