Systematic Control of the Nanostructure of Semiconducting-Ferroelectric Polymer Composites in Thin Film Memory Devices

2015 ◽  
Vol 4 (3) ◽  
pp. 293-297 ◽  
Author(s):  
Seung Hyun Sung ◽  
Bryan W. Boudouris
2021 ◽  
Author(s):  
S. S. Kulkarni ◽  
Arundhati H. Patil ◽  
U. V. Khadke

2013 ◽  
Vol 706-708 ◽  
pp. 103-107
Author(s):  
Jing Hang Hu ◽  
Xue Jian Yan ◽  
Guo Dong Zhu

In recent years ferroelectric polymer-based nonvolatile memory devices have attracted much attention due to their flexibility, transparency and ease of production. However, their electrical stability is seldom studied. In this letter we report the observation of electric fatigue in metal/ferroelectric polymer/SiO2/p-Si capacitor memories, which is compared with the electric fatigue obtained from metal/ferroelectric polymer/p-Si capacitors. Our experiments indicate that the existence of SiO2 layer has greatly improved the fatigue endurance in metal/ferroelectric polymer/SiO2/p-Si capacitors. We also discuss the possible mechanism causing this improved fatigue endurance.


Author(s):  
Jing Wang ◽  
Bailey Bedford ◽  
Chanle Chen ◽  
Ludi Miao ◽  
Binghcheng Luo

The light response and resistance switching behavior in BaTiO3 (BTO) films are studied for a symmetric Pt/BTO/Pt structure. The resistance of films as a function of time with and without ultraviolet light has been studied. Furthermore, resistance switching behavior was clearly observed based on the application of 365 nm wavelength ultraviolet light. Consequently, the polarities of resistance switching can be controlled by ultraviolet light when the energy is larger than the band excitation energy. It is proposed that the polarity of the resistance switching is dictated by the competition of the ferroelectricity and oxygen vacancy migration. This provides a new mechanism for modulating the state of ferroelectric resistive memory devices.


Small Methods ◽  
2018 ◽  
Vol 2 (6) ◽  
pp. 1700399 ◽  
Author(s):  
He Li ◽  
Feihua Liu ◽  
Baoyan Fan ◽  
Ding Ai ◽  
Zongren Peng ◽  
...  

2014 ◽  
Vol 602-603 ◽  
pp. 1056-1059 ◽  
Author(s):  
Min Chang Kuan ◽  
Fann Wei Yang ◽  
Chien Min Cheng ◽  
Kai Huang Chen ◽  
Jian Tz Lee

Up to now, the various non-volatile memory devices such as, ferroelectric random access memory (FeRAM), magnetron random access memory (MRAM), and resistance random access memory (RRAM) were widely discussed and investigated. For these nonvolatile memory devices, the resistance random access memory (RRAM) devices will play an important role because of its non-destructive readout, low operation voltage, high operation speed, long retention time, and simple structure. The resistance random access memory (RRAM) devices were only consisting of one resistor and one corresponding transistor. The subject of this work was to study the characteristics of manganese oxide (MnO) thin films deposited on transparent conductive thin film using the rf magnetron sputtering method. The optimal sputtering conditions of as-deposited manganese oxide (MnO) thin films were the rf power of 80 W, chamber pressure of 20 mTorr, substrate temperature of 580°C, and an oxygen concentration of 40%. The basic mechanisms for the bistable resistance switching were observed. In which, the non-volatile memory and switching properties of the manganese oxide (MnO) thin film structures were reported and the relationship between the memory windows and electrical properties was investigated.


2018 ◽  
Vol 20 (8) ◽  
pp. 5771-5779 ◽  
Author(s):  
Yanmei Sun ◽  
Dianzhong Wen ◽  
Xuduo Bai

Nonvolatile ternary memory devices were fabricated from the composites polymer blends containing zinc oxide (ZnO) nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document