Acid and Alkaline Dual Stimuli-Responsive Mechanized Hollow Mesoporous Silica Nanoparticles as Smart Nanocontainers for Intelligent Anticorrosion Coatings

ACS Nano ◽  
2013 ◽  
Vol 7 (12) ◽  
pp. 11397-11408 ◽  
Author(s):  
JiaJun Fu ◽  
Tao Chen ◽  
MingDong Wang ◽  
NianWang Yang ◽  
SuNing Li ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
María Vallet-Regí

Mesoporous silica nanoparticles are receiving growing attention by the scientific biomedical community. Among the different types of inorganic nanomaterials, mesoporous silica nanoparticles have emerged as promising multifunctional platforms for nanomedicine. Since their introduction in the drug delivery landscape in 2001, mesoporous materials for drug delivery are receiving growing scientific interest for their potential applications in the biotechnology and nanomedicine fields. The ceramic matrix efficiently protects entrapped guest molecules against enzymatic degradation or denaturation induced by pH and temperature as no swelling or porosity changes take place as a response to variations in the surrounding medium. It is possible to load huge amounts of cargo into the mesopore voids and capping the pore entrances with different nanogates. The application of a stimulus provokes the nanocap removal and triggers the departure of the cargo. This strategy permits the design of stimuli-responsive drug delivery nanodevices.


2015 ◽  
Vol 3 (31) ◽  
pp. 6480-6489 ◽  
Author(s):  
Haijiao Zhang ◽  
Huijuan Xu ◽  
Minghong Wu ◽  
Yufang Zhong ◽  
Donghai Wang ◽  
...  

Novel hollow mesoporous silica nanoparticles (HMSNs) with rough surfaces have been successfully prepared using a facile soft–hard template route.


2017 ◽  
Vol 53 (88) ◽  
pp. 12032-12035 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Qiuyu Qu ◽  
Xiang Cao ◽  
Yanli Zhao

Multifunctional nanocarriers consisting of hollow mesoporous silica nanoparticles loaded with doxorubicin and then capped by a complex between disulfide linked β-cyclodextrin and adamantane functionalized indocyanine dye are developed for improved anticancer efficacy through combined photothermal–chemotherapy.


2018 ◽  
Author(s):  
Wei Chen ◽  
ChiAn Cheng ◽  
Emily Cosco ◽  
Shyam Ramakrishnan ◽  
Jakob Lingg ◽  
...  

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that hollow mesoporous silica nanoparticles (HMSNs) can template the J-aggregation of NIR fluorophore IR-140 to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging <i>in vivo</i>with 980 nm excitation.


2013 ◽  
Vol 42 (3) ◽  
pp. 316-317 ◽  
Author(s):  
Takaaki Ikuno ◽  
Atsuro Nomura ◽  
Kenta Iyoki ◽  
Ayae Sugawara-Narutaki ◽  
Tatsuya Okubo ◽  
...  

Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 478 ◽  
Author(s):  
Cristina Zea ◽  
Jenifer Alcántara ◽  
Rosa Barranco-García ◽  
Manuel Morcillo ◽  
Daniel de la Fuente

Sign in / Sign up

Export Citation Format

Share Document