scholarly journals Emitting species of F8T2 single chains: effects of excitation wavelength

Author(s):  
Liwei Wang ◽  
Lewis Rothberg
2020 ◽  
Vol 49 (42) ◽  
pp. 14985-14994
Author(s):  
Xu-Sheng Gao ◽  
Mei-Juan Ding ◽  
Jin Zhang ◽  
Li-Duo Zhao ◽  
Xiao-Ming Ren

All solid solutions (EuxY1−x-PTC, x = 0.013–0.82) are isomorphic to Eu-PTC, but different from Y-PTC, and show phase selectivity as well as excitation wavelength dependent emission.


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050043
Author(s):  
Huayu Zhou ◽  
Jingjing Wang ◽  
Qiong Yang ◽  
Menglei Chen ◽  
Changsheng Song ◽  
...  

We report a one-step electrochemical deposition technique to prepare three-dimensional (3D) Ag hierarchical micro/nanostructured film consisting of well-crystallized Ag nanosheets grown on an indium tin oxide (ITO) conductive substrate. The Ag hierarchical micro/nanostructures were fabricated in the mixed solution of AgNO3 and sodium citrate in a constant current system at room temperature. Through reduction of Ag[Formula: see text] electrodeposited on the surface of ITO substrate, nanoparticles were grown to form nanosheets which further combined into 3D sphere-like microstructures. The 3D Ag micro/nanostructures have many sharp edges and nanoscale gaps which can give rise to good Raman-enhanced effect. Due to localized surface plasmon resonance (LSPR) effects, these special Ag micro/nanostructures exhibited good Raman-enhanced performance. Using Rhodamine 6G (R6G) molecules as probe molecule, we studied the influence of excitation wavelength on Raman enhancement. The results showed that the 532[Formula: see text]nm excitation wavelength is the best to obtain the strongest Raman signal and to reduce the influence of other impurity peaks. Using the as-synthesized Ag hierarchical micro/nanostructures, we can detect the 10[Formula: see text][Formula: see text]mol/L R6G aqueous solution, exhibiting great Raman-enhanced effect.


2021 ◽  
Vol 11 (9) ◽  
pp. 4047
Author(s):  
Marinos Xagoraris ◽  
Panagiota-Kyriaki Revelou ◽  
Eleftherios Alissandrakis ◽  
Petros A. Tarantilis ◽  
Christos S. Pappas

The standardization of the botanical origin of honey reflects the commercial value and quality of honey. Nowadays, most consumers are looking for a unifloral honey. The aim of the present study was to develop a novel method for honey classification using chemometric models based on phenolic compounds analyzed with right angle fluorescence spectroscopy, coupled with stepwise linear discriminant analysis (LDA). The deconstructed spectrum from three-dimensional-emission excitation matrix (3D-EEM) spectra provided a correct classification score of 94.9% calibration and cross-validation at an excitation wavelength (λex) of 330 nm. Subsequently, a score of 81.4% and 79.7%, respectively, at an excitation wavelength (λex) of 360 nm was achieved. Each chemometric model confirmed its power through the external validation with a score of 82.1% for both. Differentiation could be correlated with hydroxycinnamic and hydroxybenzoic acids, which absorb in this region of the spectrum. Fluorescence spectroscopy constitutes a rapid and sensitive technique, which, when combined with the stepwise algorithm and LDA method, can be used as a reliable and predictive authentication tool for honey. This study indicates that the developed methodology is a promising technique for determination of the botanical origin of common Greek honey varieties. Our long-term ambition is to support producers and suppliers to remain in a competitive national and international market.


2021 ◽  
Vol 11 (4) ◽  
pp. 1640
Author(s):  
Chunyu Chen ◽  
Jun Wang ◽  
Yachen Gao

This paper aims to study the nonlinear absorption characteristics of palladium nanoparticles (PdNPs) at off-resonant wavelengths. For this purpose, multi-wavelength (500–650 nm) nanosecond Z-scan technique was used. The experimental results indicate that saturated absorption (SA) and the transition from SA to reverse saturated absorption (RSA) can occur, and depends on the excitation wavelength and energy. When the excitation wavelength is constant, with the increase of excitation energy, PdNPs change from SA to RSA. When the excitation energy is constant, with the excitation wavelength approaching surface plasmon resonance (SPR), PdNPs change from SA to RSA. This phenomenon of SA and RSA under multi-wavelength excitation in the off-resonant region provides a supplement for the systematic study of the nonlinear absorption of PdNPs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 737
Author(s):  
Yasin Orooji ◽  
Hamed Ghanbari Gol ◽  
Babak Jaleh ◽  
Mohammad Reza Rashidian Vaziri ◽  
Mahtab Eslamipanah

Carbon nanoparticles (CNPs) with high porosity and great optical features can be used as a luminescent material. One year later, the same group investigated the NLO properties CNPs and boron-doped CNPs by 532 nm and 1064 nm laser excitations to uncover the underlying physical mechanisms in their NLO response. Hence, a facile approach, laser ablation technique, was employed for carbon nanoparticles (CNPs) synthesis from suspended activated carbon (AC). Morphological properties of the prepared CNPs were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). UV-Vis and fluorescence (FL) spectra were used to optical properties investigation of CNPs. The size distribution of nanoparticles was evaluated using dynamic light scattering (DLS). The nonlinear optical (NLO) coefficients of the synthesized CNPs were determined by the Z-scan method. As a result, strong reverse saturable absorption and self-defocusing effects were observed at the excitation wavelength of 442 nm laser irradiation. These effects were ascribed to the presence of delocalized π-electrons in AC CNPs. To the best of our knowledge, this is the first study investigating the NLO properties of the AC CNPs.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1770
Author(s):  
Chan Im ◽  
Sang-Woong Kang ◽  
Jeong-Yoon Choi ◽  
Jongdeok An

Non-fullerene type acceptors (NFA) have gained attention owing to their spectral extension that enables efficient solar energy capturing. For instance, the solely NFA-mediated absorbing region contributes to the photovoltaic power conversion efficiency (PCE) as high as ~30%, in the case of the solar cells comprised of fluorinated materials, PBDB-T-2F and ITIC-4F. This implies that NFAs must be able to serve as electron donors, even though they are conventionally assigned as electron acceptors. Therefore, the pathways of NFA-originated excitons need to be explored by the spectrally resolved photovoltaic characters. Additionally, excitation wavelength dependent transient absorption spectroscopy (TAS) was performed to trace the nature of the NFA-originated excitons and polymeric donor-originated excitons separately. Unique origin-dependent decay behaviors of the blend system were found by successive comparing of those solutions and pristine films which showed a dramatic change upon film formation. With the obtained experimental results, including TAS, a possible model describing origin-dependent decay pathways was suggested in the framework of reaction kinetics. Finally, numerical simulations based on the suggested model were performed to verify the feasibility, achieving reasonable correlation with experimental observables. The results should provide deeper insights in to renewable energy strategies by using novel material classes that are compatible with flexible electronics.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Zorana Lopandić ◽  
Luka Dragačević ◽  
Dragan Popović ◽  
Uros Andjelković ◽  
Rajna Minić ◽  
...  

Fluorescently labeled lectins are useful tools for in vivo and in vitro studies of the structure and function of tissues and various pathogens such as viruses, bacteria, and fungi. For the evaluation of high-mannose glycans present on various glycoproteins, a three-dimensional (3D) model of the chimera was designed from the crystal structures of recombinant banana lectin (BanLec, Protein Data Bank entry (PDB): 5EXG) and an enhanced green fluorescent protein (eGFP, PDB 4EUL) by applying molecular modeling and molecular mechanics and expressed in Escherichia coli. BanLec-eGFP, produced as a soluble cytosolic protein of about 42 kDa, revealed β-sheets (41%) as the predominant secondary structures, with the emission peak maximum detected at 509 nm (excitation wavelength 488 nm). More than 65% of the primary structure was confirmed by mass spectrometry. Competitive BanLec-eGFP binding to high mannose glycans of the influenza vaccine (Vaxigrip®) was shown in a fluorescence-linked lectin sorbent assay (FLLSA) with monosaccharides (mannose and glucose) and wild type BanLec and H84T BanLec mutant. BanLec-eGFP exhibited binding to mannose residues on different strains of Salmonella in flow cytometry, with especially pronounced binding to a Salmonella Typhi clinical isolate. BanLec-eGFP can be a useful tool for screening high-mannose glycosylation sites on different microorganisms.


2020 ◽  
Vol 7 (13) ◽  
pp. 2506-2514 ◽  
Author(s):  
Zhenbin Wang ◽  
Pengxiang Pei ◽  
Dongjie Bai ◽  
Shanshan Zhao ◽  
Xinyu Ma ◽  
...  

The multilevel anticounterfeiting QR code readily integrates the advantages of excitation wavelength-dependent PL emissions, a strong red afterglow and sensitive excitation power-dependent UCL emissions in one overall device.


2019 ◽  
Vol 21 (29) ◽  
pp. 16329-16336 ◽  
Author(s):  
Suchinder K. Sharma ◽  
Thomas Köhler ◽  
Jan Beyer ◽  
Margret Fuchs ◽  
Richard Gloaguen ◽  
...  

Extending the temperature sensing range up to 865 K using an appropriate choice of excitation wavelength and coupling scheme in a single crystal sample of EuPO4.


Sign in / Sign up

Export Citation Format

Share Document