scholarly journals Low-altitude quasi-periodic echoes studied using a large database of Gadanki radar observations

2009 ◽  
Vol 114 (A1) ◽  
pp. n/a-n/a ◽  
Author(s):  
N. Venkateswara Rao ◽  
A. K. Patra ◽  
S. V. B. Rao
1999 ◽  
Vol 17 (7) ◽  
pp. 855-867 ◽  
Author(s):  
G. Provan ◽  
T. K. Yeoman

Abstract. A study has been performed on the occurrence of pulsed ionospheric flows as detected by the CUTLASS Finland HF radar. These flows have been suggested as being created at the ionospheric footprint of newly-reconnected field lines, during episodes of magnetic flux transfer into the terrestrial magnetosphere (flux transfer events or FTEs). Two years of both high-time resolution and normal scan data from the CUTLASS Finland radar have been analysed in order to perform a statistical study of the extent and location of the pulsed ionospheric flows. We note a great similarity between the statistical pattern of the coherent radar observations of pulsed ionospheric flows and the traditional low-altitude satellite identification of the particle signature associated with the cusp/cleft region. However, the coherent scatter radar observations suggest that the merging gap is far wider than that proposed by the Newell and Meng model. The new model for cusp low-altitude particle signatures, proposed by Lockwood and Onsager and Lockwood provides a unified framework to explain the dayside precipitation regimes observed both by the low-altitude satellites and by coherent scatter radar detection.Key words. Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind-magnetosphere interactions)


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 348 ◽  
Author(s):  
Hao Wang ◽  
Venkatachalam Chandrasekar ◽  
Jianxin He ◽  
Zhao Shi ◽  
Lijuan Wang

As a manifestation of low-altitude wind shear, a downburst is a localized, strong downdraft that can lead to disastrous wind on the ground surface. For effective pre-warning and forecasting of downbursts, it is particularly critical to understand relevant weather features that occur before and during a downburst process. It is important to identify the macroscopic features associated with the downburst weather process before considering fine-scale observations because this would greatly increase the accuracy and timeliness of forecasts. Therefore, we applied the wind-vector potential-temperature energy analysis (WPEA) method and CSU-CHILL X-band dual-polarization radar to explore the features of the downburst process. Here it was found that prior to the occurrence of the downburst of interest, the specific areas that should be monitored in future events could be determined by studying the atmospherically unstable areas using the WPEA method. Combining the WPEA method with dual-polarization radar observations, we can better distinguish the phase distribution of the hydrometeor in the process and greatly enhance the judgment of the possibility of the downburst. From exploration of the microphysical features of the downburst, we further found that ‘Zdr (differential reflectivity) column’ can be regarded as an important early warning indicator of the location of the downburst. Finally, a schematic of the formation process of the downburst according to the analyses was produced.


2006 ◽  
Vol 24 (7) ◽  
pp. 1861-1869 ◽  
Author(s):  
A. K. Patra ◽  
S. Sripathi ◽  
P. B. Rao ◽  
R. K. Choudhary

Abstract. Observations of daytime E region echoes extending to altitudes as low as 87 km made using the Gadanki MST radar are presented. The echoing regions display descending layer resembling the characteristics of tidal winds and show structures with periods 2–4 min having both positive and negative slopes. At the center of the layer where strongest SNR is observed, the velocity is maximum and spectral width is minimum. At altitudes slightly above and below, where SNR is relatively low, velocity is low but spectral width is maximum. Daytime observations of echoes extending to such a low altitude and associated structures akin to nighttime quasi-periodic echoes throughout the observational period are the most significant results, not reported earlier from Gadanki and other locations. Other notable results are large SNR (as high as 15 dB) and spectral width (as high as 70 m/s) at the bottommost altitudes, where collisional damping of the plasma waves is significant


2018 ◽  
Vol 57 (5) ◽  
pp. 1063-1081 ◽  
Author(s):  
James M. Kurdzo ◽  
Earle R. Williams ◽  
David J. Smalley ◽  
Betty J. Bennett ◽  
David C. Patterson ◽  
...  

AbstractChaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D beam can appear prominently on radar users’ displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for automated algorithms to do the same. The WSR-88D network provides dual-polarimetric capabilities across the United States, leading to the collection of a large database of chaff cases. This database is analyzed to determine the characteristics of chaff in terms of the reflectivity factor and polarimetric variables on large scales. Particular focus is given to the dynamics of differential reflectivity ZDR in chaff and its dependence on height. In contrast to radar observations of chaff for a single event, this study is able to reveal a repeatable and new pattern of radar chaff observations. A discussion about the observed characteristics is presented, and hypotheses for the observed ZDR dynamics are put forth.


2018 ◽  
Vol 33 (5) ◽  
pp. 1263-1282 ◽  
Author(s):  
Arthur Witt ◽  
Donald W. Burgess ◽  
Anton Seimon ◽  
John T. Allen ◽  
Jeffrey C. Snyder ◽  
...  

Abstract Rapid-scan radar observations of a supercell that produced near-record size hail in Oklahoma are examined. Data from the National Weather Radar Testbed Phased Array Radar (PAR) in Norman, Oklahoma, are used to study the overall character and evolution of the storm. Data from the nearby polarimetric KOUN WSR-88D and rapid-scanning X-band polarimetric (RaXPol) mobile radar are used to study the evolution of low- to midaltitude dual-polarization parameters above two locations where giant hailstones up to 16 cm in diameter were observed. The PAR observation of the supercell’s maximum storm-top divergent outflow is similar to the strongest previously documented value. The storm’s mesocyclone rotational velocity at midaltitudes reached a maximum that is more than double the median value for similar observations from other storms producing giant hail. For the two storm-relative areas where giant hail was observed, noteworthy findings include 1) the giant hail occurred outside the main precipitation core, in areas with low-altitude reflectivities of 40–50 dBZ; 2) the giant hail was associated with dual-polarization signatures consistent with past observations of large hail at 10-cm wavelength, namely, low ZDR, low ρHV, and low KDP; 3) the giant hail fell along both the northeast and southwest edges of the primary updraft at ranges of 6–10 km from the updraft center; and 4) with the exception of one isolated report, the giant hail fell to the northeast and northwest of the large tornado and the parent mesocyclone.


1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


Sign in / Sign up

Export Citation Format

Share Document